Log in

Identification of Common and Specific Genes Involved in Mouse Models of Age-Related and Cyclophosphamide-Induced Diminished Ovarian Reserve

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Diminished ovarian reserve (DOR) is an etiologically heterogeneous disorder that usually leads to poor reproductive outcomes. Does a specific or common pathogenesis exist for DOR subtypes with different etiologies? Two frequently used mouse models, age-related DOR (AR-DOR) and cyclophosphamide (CTX)-induced DOR (CTX-DOR), were successfully established, and RNA sequencing was performed on ovarian tissue samples. Differentially expressed genes (DEGs) in each subtype and common DEGs (co-DEGs) in the two subtypes were identified. Subsequently, we performed comprehensive bioinformatics analyses, including an evaluation of immune cell infiltration. Finally, the genes of interest were further validated by performing RT-qPCR and immunohistochemistry. In AR-DOR mice, functional enrichment analyses showed that upregulated DEGs were mainly involved in the inflammatory/immune response, while downregulated DEGs were involved in DNA damage repair. In CTX-DOR mice, the inflammatory/immune response and cell apoptosis played significant roles. Meanwhile, 406 co-DEGs were identified from the two models. The biological functions of these co-DEGs were associated with inflammatory/immune responses. The analysis of immune cell infiltration showed reduced infiltration of Treg cells, as well as increased infiltration of M0 macrophages, NK resting, and T cells CD4 follicular in both DOR subtypes. The results of the validation experiments were consistent with the RNA sequencing data. In conclusion, the inflammatory/immune response might be the common pathogenesis for the two DOR subtypes, while DNA repair and cell apoptosis may have different roles in the two subtypes. These results may provide potential insights for mechanistic research and therapeutic targets of DOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Testing and interpreting measures of ovarian reserve. a committee opinion. Fertil Steril. 2015;103(3):e9–17. https://doi.org/10.1016/j.fertnstert.2014.12.093.

    Article  Google Scholar 

  2. Fàbregues F, Ferreri J, Méndez M, et al. In vitro follicular activation and stem cell therapy as a novel treatment strategies in diminished ovarian reserve and primary ovarian insufficiency. Front Endocrinol (Lausanne). 2020;11:617704. https://doi.org/10.3389/fendo.2020.617704.

    Article  PubMed  Google Scholar 

  3. Jiao Z, Bukulmez O. Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. J Assist Reprod Genet. 2021;38(10):2507–17. https://doi.org/10.1007/s10815-021-02246-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Levi AJ, Raynault MF, Bergh PA, et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9.

    Article  CAS  PubMed  Google Scholar 

  5. Christodoulaki A, Boel A, Tang M, et al. Prospects of germline nuclear transfer in women with diminished ovarian reserve. Frontiers in Endocrinology. 2021;12:635370. https://doi.org/10.3389/fendo.2021.635370.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pastore LM, Christianson MS, Stelling J, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet. 2018;35(1):17–23. https://doi.org/10.1007/s10815-017-1058-4.

    Article  PubMed  Google Scholar 

  7. Liu H, Jiang C, La B, et al. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res & Therapy. 2021;12(1):317. https://doi.org/10.1186/s13287-021-02382-x.

    Article  CAS  Google Scholar 

  8. Huang P, Zhou Y, Tang W, et al. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granuloas cells in mice. J Nutr Biochem. 2022;101:108911. https://doi.org/10.1016/j.jnutbio.2021.108911.

  9. Jiang L, Chen Y, Wang Q, et al. A Chinese practice guideline of the assisted reproductive technology strategies for women with advanced age. J Evid Based Med. 2019;12(2):167–84. https://doi.org/10.1111/jebm.12346.

    Article  PubMed  Google Scholar 

  10. Park SU. L Walsh, and K M Berkowitz, Mechanisms of ovarian aging. Reproduction. 2021;162(2):R19–33. https://doi.org/10.1530/REP-21-0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  12. Kim S, Kim S-W, Han S-J, et al. Molecular mechanism and prevention strategy of chemotherapy- and radiotherapy-induced ovarian damage. Int J Mol Sci. 2021;22(14):7484. https://doi.org/10.3390/ijms22147484

  13. Hopeman MM, Cameron KE, Prewitt M, et al. A predictive model for chemotherapy-related diminished ovarian reserve in reproductive-age women. Fertil Steril. 2021;115(2):431–7. https://doi.org/10.1016/j.fertnstert.2020.08.003.

    Article  PubMed  Google Scholar 

  14. Spears N, Lopes F, Stefansdottir A, et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673–93. https://doi.org/10.1093/humupd/dmz027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Yu Q, Huang H, et al. Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther. 2018;9(1):81. https://doi.org/10.1186/s13287-018-0819-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin X, Zhao Y, Zhang T, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun. 2022;13(1):914. https://doi.org/10.1038/s41467-022-28611-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4(4):80. https://doi.org/10.1186/scrt231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yureneva S, Averkova V, Silachev D, et al. Searching for female reproductive aging and longevity biomarkers. Aging. 2021;13(12):16873–94. https://doi.org/10.18632/aging.203206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterson CL, Côté J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18(6):602–16. https://doi.org/10.1101/gad.1182704.

    Article  CAS  PubMed  Google Scholar 

  20. Schneider A, Matkovich SJ, Saccon T, et al. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328–36. https://doi.org/10.1016/j.mce.2016.09.019.

    Article  CAS  PubMed  Google Scholar 

  21. Beverley R. M L Snook, and M A Brieño-Enríquez, Meiotic cohesin and variants associated with human reproductive aging and disease. Front Cell Dev Biol. 2021;9:710033. https://doi.org/10.3389/fcell.2021.710033.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oktay K, Turan V, Titus S, et al. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol Reprod. 2015;93(3):67. https://doi.org/10.1095/biolreprod.115.132290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Titus S, Li F, Stobezki R, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):17221. https://doi.org/10.1126/scitranslmed.3004925.

    Article  CAS  Google Scholar 

  24. Govindaraj V. R Keralapura Basavaraju, and A J Rao, Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online. 2015;30(3):303–10. https://doi.org/10.1016/j.rbmo.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  25. Govindaraj V, Krishnagiri H, Chakraborty P, et al. Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med. 2017;63(1):37–48. https://doi.org/10.1080/19396368.2016.1267820.

    Article  CAS  PubMed  Google Scholar 

  26. Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood. 2006;107(11):4223–33. https://doi.org/10.1182/blood-2005-10-4240.

    Article  CAS  PubMed  Google Scholar 

  27. Sklavos MM, Giri N, Stratton P, et al. Anti-Müllerian hormone deficiency in females with Fanconi anemia. J Clin Endocrinol Metab. 2014;99(5):1608–14. https://doi.org/10.1210/jc.2013-3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piasecka-Srader J, Blanco FF, Delman DH, et al. Tamoxifen prevents apoptosis and follicle loss from cyclophosphamide in cultured rat ovaries. Biol Reprod. 2015;92(5):132. https://doi.org/10.1095/biolreprod.114.126136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pascuali N, Scotti L, Di Pietro M, et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.

    Article  CAS  PubMed  Google Scholar 

  30. Yuksel A, Bildik G, Senbabaoglu F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30(12):2926–35. https://doi.org/10.1093/humrep/dev256.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Z, Fan Q, Zhu Q, et al. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve. J Assist Reprod Genet. 2022;39(5):1105–14. https://doi.org/10.1007/s10815-022-02462-8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. D’Avila ÂM, Biolchi V, Capp E, et al. Age, anti-müllerian hormone, antral follicles count to predict amenorrhea or oligomenorrhea after chemotherapy with cyclophosphamide. J Ovarian Res. 2015;8:82. https://doi.org/10.1186/s13048-015-0209-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lande Y, Fisch B, Tsur A, et al. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro. Reprod Biomed Online. 2017;34(1):104–14. https://doi.org/10.1016/j.rbmo.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  34. Deng T, He J, Yao Q, et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod Sci. 2021;28(6):1718–32. https://doi.org/10.1007/s43032-021-00499-1.

    Article  CAS  PubMed  Google Scholar 

  35. Bukovsky A, Presl J. Ovarian function and the immune system. Med Hypotheses. 1979;5(4):415–36. https://doi.org/10.1016/0306-9877(79)90108-7.

    Article  CAS  PubMed  Google Scholar 

  36. Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science. 1969;166(3906):753–5.

    Article  CAS  PubMed  Google Scholar 

  37. Lliberos C, Liew SH, Zareie P, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep. 2021;11(1):278. https://doi.org/10.1038/s41598-020-79488-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lliberos C, Liew SH, Mansell A, et al. The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Front Cell Dev Biol. 2020;8:628473. https://doi.org/10.3389/fcell.2020.628473.

    Article  PubMed  Google Scholar 

  39. Luo Q, Yin N, Zhang L, et al. Role of SDF-1/CXCR4 and cytokines in the development of ovary injury in chemotherapy drug induced premature ovarian failure mice. Life Sci. 2017;179:103–9. https://doi.org/10.1016/j.lfs.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  40. Du Y, Carranza Z, Luan Y, et al. Evidence of cancer therapy-induced chronic inflammation in the ovary across multiple species: a potential cause of persistent tissue damage and follicle depletion. J Reprod Immunol. 2022;150:103491. https://doi.org/10.1016/j.jri.2022.103491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aoki N, Kimura S, **ng Z. Role of DAP12 in innate and adaptive immune responses. Curr Pharm Des. 2003;9(1):7–10. https://doi.org/10.2174/1381612033392503

  42. Mukherjee S, Klaus C, Pricop-Jeckstadt M, et al. A microglial signature directing human aging and neurodegeneration-related gene networks. Front Neurosci. 2019;13:2. https://doi.org/10.3389/fnins.2019.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: Shedding light on cancer biology. Semin Oncol. 2017;44(4):239–53. https://doi.org/10.1053/j.seminoncol.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Masternak MM, Schneider A, et al. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online. 2022;44(1):5. https://doi.org/10.1016/j.rbmo.2021.09.016.

  45. Saccon TD, Rovani MT, Garcia DN, et al. Growth hormone increases DNA damage in ovarian follicles and macrophage infiltration in the ovaries. Geroscience. 2021. https://doi.org/10.1007/s11357-021-00380-8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang Z, Tang Z, Cao X, et al. Controlling chronic low-grade inflammation to improve follicle development and survival. Am J Reprod Immunol. 2020;84(2):e13265. https://doi.org/10.1111/aji.13265.

    Article  PubMed  Google Scholar 

  47. Huang Y, Hu C, Ye H, et al. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency. J Immunol Res. 2019;2019:8069898. https://doi.org/10.1155/2019/8069898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiao X, Zhang X, Li N, et al. T deficiency-mediated T 1 response causes human premature ovarian insufficiency through apoptosis and steroidogenesis dysfunction of granulosa cells. Clin Transl Med. 2021;11(6):e448. https://doi.org/10.1002/ctm2.448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu X. S-Y Li, and T DeFalco, Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J. 2022;289(9):2386–408. https://doi.org/10.1111/febs.15848.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z. L Huang, and L Brayboy, Macrophages: an indispensable piece of ovarian health. Biol Reprod. 2021;104(3):527–38. https://doi.org/10.1093/biolre/ioaa219.

    Article  PubMed  Google Scholar 

  51. Ordaz-Arias MA, Díaz-Alvarez L, Zúñiga J, et al. Cyclic attractors are critical for macrophage differentiation, heterogeneity, and plasticity. Front Mol Biosci. 2022;9:807228. https://doi.org/10.3389/fmolb.2022.807228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81960278), the Outstanding Youth Funds of Science and Technology Department of Gansu Province (No. 20JR5RA371), the Key Research and Development Program of Gansu Province (No. 20YF3FA031), and Longyuan Youth Innovation and Entrepreneurship Talent Project.

Author information

Authors and Affiliations

Authors

Contributions

Ruifen He, **aolei Liang, and Yongxiu Yang contributed to the central idea and design of work; Qigang Fan, Yi Li, and Qinying Zhu, acquisition of sample and sample processing; Ruifen He, Dan Hu, Junhong Du, and Yijuan **ng, analysis and interpretation of data; Hongli Li, **aolei Liang, and Yongxiu Yang, critical feedback of the manuscript. The original draft was written by Ruifen He.

Corresponding authors

Correspondence to **aolei Liang or Yongxiu Yang.

Ethics declarations

Ethics Approval

This study makes the use of male C57BL/6 mice, and all the experimental protocol for the use of animal was approved by the Ethics Committee of the First Hospital of Lanzhou University (LDYYLL2019-44).

Consent to Participate

Not applicable.

Consent for Publication

All the co-authors have agreed to publication in the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Fan, Q., Li, Y. et al. Identification of Common and Specific Genes Involved in Mouse Models of Age-Related and Cyclophosphamide-Induced Diminished Ovarian Reserve. Reprod. Sci. 30, 1965–1978 (2023). https://doi.org/10.1007/s43032-022-01161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01161-0

Keywords

Navigation