Log in

Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a well-known environmental pollutant that can contribute to male reproductive toxicity through oxidative stress. Nano-selenium (Nano-se) is an active single body of selenium with strong antioxidant properties and low toxicity. Some studies have addressed the potential ameliorative effect of Nano-se against Cd-induced testicular toxicity; however, the underlying mechanisms remain to be investigated. This study aimed to explore the protective effect of Nano-se on Cd-induced mouse testicular TM3 cell toxicity by regulating autophagy process. We showed that cadmium exposure to TM3 cells inhibited cell viability and elevated the level of reactive oxygen species (ROS) generation. Morphology observation by transmission electron microscope and the presence of mRFP-GFP-LC3 fluorescence puncta demonstrated that cadmium increased autophagosome formation and accumulation in TM3 cells, resulting in blocking the autophagic flux of TM3 cells. Meanwhile, cadmium remarkably increased the ratio of LC3-II to LC3-I protein expression (2.07 ± 0.31) and the Beclin-1 protein expression (1.97 ± 0.40) in TM3 cells (P < 0.01). Pretreatment with Nano-se significantly reduced Cd-induced TM3 cell toxicity (P < 0.01). Furthermore, Nano-se treatment reversed Cd-induced ROS production and autophagosome accumulation, and autophagy as evidenced by the ratio of LC3-II to LC3-I and Beclin-1 expression. In addition, ROS scavenger, N-acetyl-L-cysteine (NAC) or autophagy inhibitor, 3-methyladenine (3-MA) reversed cadmium-induced ROS generation, autophagosome accumulation, and autophagy-related protein expression levels, which confirmed that cadmium induced TM3 cell injury via ROS signal pathway and blockage of autophagic flux. Collectively, our results reveal that Nano-se attenuates Cd-induced TM3 cell toxicity through the inhibition of ROS production and the amelioration of autophagy disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Spanò C, Bottega S, Sorce C, et al. TiO(2) nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides. Environ Sci Pollut Res Int. 2019;26(29):29872–82.

    Article  PubMed  Google Scholar 

  2. RafatiRahimzadeh M, RafatiRahimzadeh M, Kazemi S, et al. Cadmium toxicity and treatment: an update. Caspian J Intern Med. 2017;8(3):135–45.

    Google Scholar 

  3. Ohba KI. Transport and toxicity of cadmium. Nihon Eiseigaku Zasshi. 2018;73(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou GX, Liu WB, Dai LM, et al. Environmental cadmium impairs blood-testis barrier via activating HRI-responsive mitochondrial stress in mice. Sci Total Environ. 2022;810:152247.

    Article  CAS  PubMed  Google Scholar 

  5. Hardneck F, Israel G, Pool E, et al. Quantitative assessment of heavy metal effects on sperm function using computer-aided sperm analysis and cytotoxicity assays. Andrologia. 2018;50(10):e13141.

    Article  PubMed  Google Scholar 

  6. Mouro VGS, Siman VA, da Silva J, et al. Cadmium-induced testicular toxicity in mice: subacute and subchronic route-dependent effects. Biol Trace Elem Res. 2020;193(2):466–82.

    Article  CAS  PubMed  Google Scholar 

  7. Yang SH, Chen ST, Liang C, et al. Effects of cadmium exposure on Leydig cells and blood vessels in mouse testis. Int J Environ Res Public Health. 2022;19(4):2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar BA, Reddy AG, Kumar PR, et al. Protective role of N-acetyl L-cysteine against reproductive toxicity due to interaction of lead and cadmium in male Wistar rats. J Nat Sci Biol Med. 2013;4(2):414–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Wang N, Nie X, et al. Blood cadmium level associates with lower testosterone and sex hormone-binding globulin in Chinese men: from SPECT-China study, 2014. Biol Trace Elem Res. 2016;171(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Ren X, Hu X, et al. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol. 2019;368:37–48.

    Article  CAS  PubMed  Google Scholar 

  11. Takeshima T, Usui K, Mori K, et al. Oxidative stress and male infertility. Reprod Med Biol. 2021;20(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  12. Jahan S, Azad T, Ayub A, et al. Ameliorating potency of Chenopodium album Linn. and vitamin C against mercuric chloride-induced oxidative stress in testes of Sprague Dawley rats. Environ Health Prev Med. 2019;24(1):62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang G, Yang W, Jiang F, et al. PERK regulates Nrf2/ARE antioxidant pathway against dibutyl phthalate-induced mitochondrial damage and apoptosis dependent of reactive oxygen species in mouse spermatocyte-derived cells. Toxicol Lett. 2019;308:24–33.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Q, Liu Y, Zhang S, et al. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice. Autophagy. 2021;17(7):1753–67.

    Article  CAS  PubMed  Google Scholar 

  15. Sadeghi N, Erfani-Majd N, Tavalaee M, et al. Signs of ROS-associated autophagy in testis and sperm in a rat model of varicocele. Oxid Med Cell Longev. 2020;2020:5140383.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun Y, Shen J, Zeng L, et al. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells. Environ Pollut. 2018;243(Pt A):563–72.

    Article  CAS  PubMed  Google Scholar 

  17. Wei S, Qiu T, Yao X, et al. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater. 2020;384:121390.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Li ZF, Zhang D, et al. Quercetin alleviates cadmium-induced autophagy inhibition via TFEB-dependent lysosomal restoration in primary proximal tubular cells. Ecotoxicol Environ Saf. 2021;208:111743.

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz KJ, Ademi C, Bertram S, et al. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 2016;14(1):189.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin CW, Chen YS, Lin CC, et al. Autophagy-related gene LC3 expression in tumor and liver microenvironments significantly predicts recurrence of hepatocellular carcinoma after surgical resection. Clin Transl Gastroenterol. 2018;9(6):166.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Adedara IA, Adebowale AA, Atanda OE, et al. Selenium abates reproductive dysfunction via attenuation of biometal accumulation, oxido-inflammatory stress and caspase-3 activation in male rats exposed to arsenic. Environ Pollut. 2019;254(Pt B):113079.

    Article  CAS  PubMed  Google Scholar 

  22. Rungsung S, Khan AM, Sood NK, et al. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity. Chem Biol Interact. 2016;252:87–92.

    Article  CAS  PubMed  Google Scholar 

  23. Huang X, Sun B, Zhang J, et al. Selenium deficiency induced injury in chicken muscular stomach by downregulating selenoproteins. Biol Trace Elem Res. 2017;179(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  24. Battin EE, Zimmerman MT, Ramoutar RR, et al. Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics. 2011;3(5):503–12.

    Article  CAS  PubMed  Google Scholar 

  25. Loeschner K, Hadrup N, Hansen M, et al. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics. 2014;6(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Zhang XH, Hu XD, et al. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif Cells Nanomed Biotechnol. 2018;46(5):937–48.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao G, Wu X, Chen P, et al. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic Biol Med. 2018;126:55–66.

    Article  CAS  PubMed  Google Scholar 

  28. Ren X, Wang S, Zhang C, et al. Selenium ameliorates cadmium-induced mouse Leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. Ecotoxicol Environ Saf. 2020;192:110266.

    Article  CAS  PubMed  Google Scholar 

  29. Adams J, Feuerborn M, Molina JA, et al. Autophagy-lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep. 2019;9(1):151.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dong Y, Wu Y, Zhao GL, et al. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur Rev Med Pharmacol Sci. 2019;23(3):1047–54.

    CAS  PubMed  Google Scholar 

  32. Knazicka Z, Forgacs Z, Lukacova J, et al. Endocrine disruptive effects of cadmium on steroidogenesis: human adrenocortical carcinoma cell line NCI-H295R as a cellular model for reproductive toxicity testing. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(4):348–56.

    Article  CAS  PubMed  Google Scholar 

  33. Abdelrazek HM, Helmy SA, Elsayed DH, et al. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol. 2016;16(4):300–8.

    Article  PubMed  Google Scholar 

  34. Tavoosi S, Baghsheikhi AH, Shetab-Boushehri SV, et al. Cerium and yttrium oxide nanoparticles and nano-selenium produce protective effects against H2O2-induced oxidative stress in pancreatic beta cells by modulating mitochondrial dysfunction. Pharm Nanotechnol. 2020;8(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  35. Cui D, Ma J, Liang T, et al. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int J Biol Macromol. 2019;137:829–35.

    Article  CAS  PubMed  Google Scholar 

  36. Salassa BN, Romano PS. Autophagy: a necessary process during the Trypanosoma cruzi life-cycle. Virulence. 2019;10(1):460–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sun CY, Zhang QY, Zheng GJ, et al. Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol. 2019;83(1):17–26.

    Article  PubMed  Google Scholar 

  38. Huang S, **e T, Liu W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J buon. 2019;24(3):990–6.

    PubMed  Google Scholar 

  39. Wang M, Wang XF, Li YM, et al. Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis. 2020;11(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Dong X, Zhao R, et al. Cadmium results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells. Cell Signal. 2019;55:26–39.

    Article  CAS  PubMed  Google Scholar 

  41. ** S, Gao J, Qi Y, et al. TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 2020;524(4):970–6.

    Article  CAS  PubMed  Google Scholar 

  42. **a J, He Y, Meng B, et al. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma. Mol Oncol. 2020;14(4):763–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol. 2019;1206:109–26.

    Article  CAS  PubMed  Google Scholar 

  44. Mareninova OA, Jia W, Gretler SR, et al. Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice. Autophagy. 2020;16(11):2084–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu YY, Zheng BR, Chen WZ, et al. Expression and role of autophagy related protein p62 and LC3 in the retina in a rat model of acute ocular hypertension. Int J Ophthalmol. 2020;13(1):21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guo M, Wang Y, Zhao H, et al. Oxidative damage under As(3+) and/or Cu(2+) stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem. 2020;205:110989.

    Article  CAS  PubMed  Google Scholar 

  47. Riaz M, Mahmood Z, Shahid M, et al. Impact of reactive oxygen species on antioxidant capacity of male reproductive system. Int J Immunopathol Pharmacol. 2016;29(3):421–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao R, Yu Q, Hou L, et al. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol. 2020;121:105715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 81302429), Postgraduate and Undergraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_2128, KYCX20_2500, KYCX21_2726, and 202010313060Y), and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angmei Ren.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Lin, R., Zhang, C. et al. Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux. Reprod. Sci. 30, 1808–1822 (2023). https://doi.org/10.1007/s43032-022-01146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01146-z

Keywords

Navigation