Log in

Discontinuous stationary solutions to certain reaction-diffusion systems

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

Systems consisting of a single ordinary differential equation coupled with one reaction-diffusion equation in a bounded domain and with the Neumann boundary conditions are studied in the case of particular nonlinearities from the Brusselator model, the Gray-Scott model, the Oregonator model and a certain predator-prey model. It is shown that the considered systems have the both smooth and discontinuous stationary solutions, however, only discontinuous ones can be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chuan, L.H., Tsujikawa, T., Yagi, A.: Asymptotic behavior of solutions for forest kinematic model. Funkcial. Ekvac. 49, 427–449 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cygan, S., Marciniak-Czochra, A., Karch, G., Suzuki, K.: Instability of all regular stationary solutions to reaction-diffusion-ODE systems, ar**v:2105.05023 (2021)

  3. Cygan, S., Marciniak-Czochra, A., Karch, G., Suzuki, K.: Stable discontinuous stationary solutions to reaction-diffusion-ODE systems, ar**v:2111.01214 (2021)

  4. Doelman, A., Gardner, R.A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray-Scott model. Mem. Amer. Math. Soc. 155, xii+64 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Erneux, T., Reiss, E.L.: Brussellator isolas. SIAM J. Appl. Math. 43, 1240–1246 (1983)

    Article  MathSciNet  Google Scholar 

  6. Field, R.J., Koros, E., Noyes, R.M.: Oscillations in chemical systems. ii. thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American Chemical Society 94, 8649–8664 (1972)

    Article  Google Scholar 

  7. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. iv. limit cycle behavior in a model of a real chemical reaction. The Journal of Chemical Physics 60, 1877–1884 (1974)

    Article  Google Scholar 

  8. Golovaty, Y., Marciniak-Czochra, A., Ptashnyk, M.: Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Commun. Pure Appl. Anal. 11, 229–241 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gray, P., Scott, S.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system \(a + 2b \rightarrow 3b\); \(b \rightarrow c\). Chemical Engineering Science 39, 1087–1097 (1984)

    Article  Google Scholar 

  10. Gurbuz, B., Rendall, A.D.: Analysis of a model of the Calvin cycle with diffusion of ATP, ar**v:2106.14732v1 (2021)

  11. Härting, S., Marciniak-Czochra, A.: Spike patterns in a reaction-diffusion ODE model with Turing instability. Math. Methods Appl. Sci. 37, 1377–1391 (2014)

    Article  MathSciNet  Google Scholar 

  12. Härting, S., Marciniak-Czochra, A., Takagi, I.: Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete Contin. Dyn. Syst. 37, 757–800 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hosono, Y., Mimura, M.: Singular perturbations for pairs of two-point boundary value problems of Neumann type, In: Mathematical analysis on structures in nonlinear phenomena (Tokyo, 1978), vol. 2 of Lecture Notes Numer. Appl. Anal., Kinokuniya Book Store, Tokyo, pp. 79–138 (1980)

  14. Kolokolnikov, T., Erneux, T., Wei, J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Phys. D 214, 63–77 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kolokolnikov, T., Ward, M.J., Wei, J.: Slow translational instabilities of spike patterns in the one-dimensional Gray-Scott model. Interfaces Free Bound. 8, 185–222 (2006)

    Article  MathSciNet  Google Scholar 

  16. Köthe, A., Marciniak-Czochra, A.: Multistability and hysteresis-based mechanism of pattern formation in biology, In: Pattern formation in morphogenesis, vol. 15 of Springer Proc. Math., Springer, Heidelberg, pp. 153–173 (2013)

  17. Li, Y., Marciniak-Czochra, A., Takagi, I., Wu, B.: Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis. Hiroshima Math. J. 47, 217–247 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Marciniak-Czochra, A., Takagi, I., Wu, B.: Steady states of FitzHugh-Nagumo system with non-diffusive activator and diffusive inhibitor. Tohoku Math. J. (2) 71, 243–279 (2019)

    Article  MathSciNet  Google Scholar 

  19. Marciniak-Czochra, A.: Receptor-based models with hysteresis for pattern formation in hydra. Math. Biosci. 199, 97–119 (2006)

    Article  MathSciNet  Google Scholar 

  20. Marciniak-Czochra, A.: Reaction-diffusion models of pattern formation in developmental biology, In: Mathematics and life sciences, vol. 1 of De Gruyter Ser. Math. Life Sci., De Gruyter, Berlin, pp. 191–212 (2013)

  21. Marciniak-Czochra, A.: Reaction-diffusion-ODE models of pattern formation, In: Evolutionary equations with applications in natural sciences, vol. 2126 of Lecture Notes in Math., Springer, Cham, pp. 387–438 (2015)

  22. Marciniak-Czochra, A., Karch, G., Suzuki, K.: Unstable patterns in reaction-diffusion model of early carcinogenesis. J. Math. Pures Appl. (9) 99, 509–543 (2013)

    Article  MathSciNet  Google Scholar 

  23. Marciniak-Czochra, A., Karch, G., Suzuki, K.: Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74, 583–618 (2017)

    Article  MathSciNet  Google Scholar 

  24. Marciniak-Czochra, A., Nakayama, M., Takagi, I.: Pattern formation in a diffusion-ODE model with hysteresis. Differential Integral Equations 28, 655–694 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mimura, M., Tabata, M., Hosono, Y.: Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. SIAM J. Math. Anal. 11, 613–631 (1980)

    Article  MathSciNet  Google Scholar 

  26. Peña, B., Pérez-García, C.: Stability of Turing patterns in the Brusselator model, Phys. Rev. E (3), 64, pp. 056213, 9 (2001)

  27. Peng, R., Sun, F.: Turing pattern of the oregonator model. Nonlinear Analysis: Theory, Methods & Applications 72, 2337–2345 (2010)

    Article  MathSciNet  Google Scholar 

  28. Perthame, B., Skrzeczkowski, J.: Fast reaction limit with nonmonotone reaction function, ar**v:2008.11086 (2020)

  29. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems: Ii. J. Chem. Phys. 48, 1665–1700 (1968)

    Article  Google Scholar 

  30. Takagi, I., Zhang, C.: Existence and stability of patterns in a reaction-diffusion-ode system with hysteresis in non-uniform media. Discrete Contin. Dyn. Syst. 41, 3109–3140 (2021)

    Article  MathSciNet  Google Scholar 

  31. Takagi, I., Zhang, C.: Pattern formation in a reaction-diffusion-ODE model with hysteresis in spatially heterogeneous environments. J. Differential Equations 280, 928–966 (2021)

    Article  MathSciNet  Google Scholar 

  32. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London Ser. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  33. Tyson, J.J., Fife, P.C.: Target patterns in a realistic model of the belousovâ“zhabotinskii reaction. The Journal of Chemical Physics 73, 2224–2237 (1980)

    Article  MathSciNet  Google Scholar 

  34. Wei, J., Winter, M.: Mathematical aspects of pattern formation in biological systems, vol. 189 of Applied Mathematical Sciences, Springer, London (2014)

  35. Weinberger, H.F.: A simple system with a continuum of stable inhomogeneous steady states, In: Nonlinear partial differential equations in applied science (Tokyo, 1982), vol. 81 of North-Holland Math. Stud., North-Holland, Amsterdam, pp. 345–359 (1983)

  36. Zhou, J.: Bifurcation analysis of the oregonator model. Applied Mathematics Letters 52, 192–198 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Cygan acknowledges a support by the Polish NCN grant 2016/23/B/ST1/00434. The work of A. Marciniak-Czochra was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster and SFB1324 (B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Karch.

Additional information

Dedicated to Eiji Yanagida on the occasion of his birthday.

This article is part of the topical collection “Qualitative properties of solutions to nonlinear parabolic problems: In honor of Professor Eiji Yanagida on the occasion of his 65th birthday” edited by Senjo Shimizu, Tohru Ozawa, Kazuhiro Ishige, Marek Fila (Guest Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cygan, S., Marciniak-Czochra, A. & Karch, G. Discontinuous stationary solutions to certain reaction-diffusion systems. Partial Differ. Equ. Appl. 3, 49 (2022). https://doi.org/10.1007/s42985-022-00188-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42985-022-00188-x

Keywords

Mathematics Subject Classification

Navigation