Log in

A Semiautomatic Image Processing-Based Method for Binary Segmentation of Lungs in Computed Tomography Images

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Precise biomedical image segmentation is pivotal in medical diagnosis and treatment. Among various methodologies, image processing-based techniques are useful due to their swift and consistent results, free from the dependency on extensive training data required by deep learning approaches. This study introduces a tri-phase, semi-automated pipeline for lung computed tomography image segmentation, beginning with a preprocessing phase that includes contrast enhancement, noise reduction, and edge detection to improve image quality. This is followed by the application of the region growing method for segmentation and is completed with morphological closing to refine the final output. Comparative tests reveal that our technique surpasses prevalent methods like split and merge, Otsu’s technique, and basic region growing in terms of the dice coefficient (DC) and intersection over union (IoU). Specifically, our approach achieved an average DC of 0.9633, contrasting with 0.4668, 0.005, and 0.4067 recorded by Otsu’s, split and merge, and basic region growing techniques respectively. Similarly, the average IoU for our method was 0.9341, in comparison to 0.3105, 0.0660, and 0.2605 for the aforementioned methods. Additionally, comparative analysis with contemporary segmentation models demonstrates that our approach is competitive, even without relying on large training datasets. These results highlight our method’s efficiency and practicality, distinguishing it as a compelling option in medical scenarios where access to extensive training data is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The datasets generated during and/or analysed during the current study are available in Kaggle, https://www.kaggle.com/kmader/finding-lungs-in-ct-data.

Notes

  1. https://www.kaggle.com/kmader/finding-lungs-in-ct-data.

  2. https://github.com/Leo-Thomas/IP-Lung-Segmentation.

References

  1. Chen J, Liao X, Qin Z. Identifying tampering operations in image operator chains based on decision fusion. Signal Process Image Commun. 2021;95:116287. https://doi.org/10.1016/j.image.2021.116287.

    Article  Google Scholar 

  2. Ramos L, Pineda I. Lung segmentation pipeline for CT images. In: 2022 IEEE sixth Ecuador technical chapters meeting (ETCM). 2022. p. 1–6. https://doi.org/10.1109/ETCM56276.2022.9935736.

  3. Wang S, Wang C, Xu C. An image encryption algorithm based on a hidden attractor chaos system and the Knuth–Durstenfeld algorithm. Opt Lasers Eng. 2020;128:105995. https://doi.org/10.1016/j.optlaseng.2019.105995.

    Article  Google Scholar 

  4. Yin W, Li L, Wu F-X. Deep learning for brain disorder diagnosis based on fmri images. Neurocomputing. 2022;469:332–45. https://doi.org/10.1016/j.neucom.2020.05.113.

    Article  Google Scholar 

  5. Zhang B, Wu Y, Zhao B, Chanussot J, Hong D, Yao J, Gao L. Progress and challenges in intelligent remote sensing satellite systems. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:1814–22. https://doi.org/10.1109/JSTARS.2022.3148139.

    Article  Google Scholar 

  6. Ramos L, Casas E, Bendek E, Romero C, Rivas-Echeverría F. Computer vision for wildfire detection: a critical brief review. Multimed Tools Appl. 2024. https://doi.org/10.1007/s11042-024-18685-z.

    Article  Google Scholar 

  7. Fang X, Xu S, Wood BJ, Yan P. Deep learning-based liver segmentation for fusion-guided intervention. Int J Comput Assist Radiol Surg. 2020;15(6):963–72. https://doi.org/10.1007/s11548-020-02147-6.

    Article  Google Scholar 

  8. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, Rueckert D. Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med. 2020. https://doi.org/10.3389/fcvm.2020.00025.

    Article  Google Scholar 

  9. Moussaoui H, El Akkad N, Benslimane M. A brain tumor segmentation and detection technique based on birch and marker watershed. SN Comput Sci. 2023. https://doi.org/10.1007/s42979-023-01802-4.

    Article  Google Scholar 

  10. Tang Y, Ren F, Pedrycz W. Fuzzy c-means clustering through ssim and patch for image segmentation. Appl Soft Comput. 2020;87:105928. https://doi.org/10.1016/j.asoc.2019.105928.

    Article  Google Scholar 

  11. Renard F, Guedria S, Palma ND, Vuillerme N. Variability and reproducibility in deep learning for medical image segmentation. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-69920-0.

    Article  Google Scholar 

  12. Li Y, Wang Z, Yin L, Zhu Z, Qi G, Liu Y. X-net: a dual encoding-decoding method in medical image segmentation. Vis Comput. 2021;39(6):2223–33. https://doi.org/10.1007/s00371-021-02328-7.

    Article  Google Scholar 

  13. Dot G, Schouman T, Dubois G, Rouch P, Gajny L. Fully automatic segmentation of craniomaxillofacial ct scans for computer-assisted orthognathic surgery planning using the nnu-net framework. Eur Radiol. 2022;32(6):3639–48. https://doi.org/10.1007/s00330-021-08455-y.

    Article  Google Scholar 

  14. Hörst F, Rempe M, Heine L, Seibold C, Keyl J, Baldini G, Ugurel S, Siveke J, Grünwald B, Egger J, Kleesiek J. Cellvit: vision transformers for precise cell segmentation and classification. Med Image Anal. 2024;94:103143. https://doi.org/10.1016/j.media.2024.103143.

    Article  Google Scholar 

  15. Zhang J, Gong L-R, Yu K, Qi X, Wen Z, Hua Q, Myint SH. 3d reconstruction for super-resolution ct images in the internet of health things using deep learning. IEEE Access. 2020;8:121513–25. https://doi.org/10.1109/ACCESS.2020.3007024.

    Article  Google Scholar 

  16. Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR. X-ray computed tomography. Nat Rev Methods Primers. 2021. https://doi.org/10.1038/s43586-021-00015-4.

    Article  Google Scholar 

  17. Eslami P, Thondapu V, Karady J, Hartman EM, ** Z, Albaghdadi M, Lu M, Wentzel JJ, Hoffmann U. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int J Cardiovasc Imaging. 2020;36(12):2319–33. https://doi.org/10.1007/s10554-020-01954-x.

    Article  Google Scholar 

  18. Castro R, Ramos L, Román S, Bermeo M, Crespo A, Cuenca E. U-net vs. transunet: performance comparison in medical image segmentation. In: Botto-Tobar M, Zambrano Vizuete M, Montes León S, Torres-Carrión P, Durakovic B, editors. Applied technologies. Cham: Springer; 2023. p. 212–26. https://doi.org/10.1007/978-3-031-24985-3_16.

  19. Hu H, Li Q, Zhao Y, Zhang Y. Parallel deep learning algorithms with hybrid attention mechanism for image segmentation of lung tumors. IEEE Trans Ind Inform. 2021;17(4):2880–9. https://doi.org/10.1109/TII.2020.3022912.

    Article  Google Scholar 

  20. Silva F, Pereira T, Morgado J, Cunha A, Oliveira HP. The impact of interstitial diseases patterns on lung ct segmentation. In: 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC). 2021. p. 2856–59. https://doi.org/10.1109/EMBC46164.2021.9630354.

  21. Bhattacharjee A, Murugan R, Goel T, Soni B. Semantic segmentation of lungs using a modified u-net architecture through limited computed tomography images. In: 2021 advanced communication technologies and signal processing (ACTS). 2021. p. 1–6. https://doi.org/10.1109/ACTS53447.2021.9708190.

  22. Chen W, Wang Y, Tian D, Yao Y. Ct lung nodule segmentation: a comparative study of data preprocessing and deep learning models. IEEE Access. 2023;11:34925–31. https://doi.org/10.1109/ACCESS.2023.3265170.

    Article  Google Scholar 

  23. Kasu NR, Saravanan C. Segmentation on chest radiographs using otsu’s and k-means clustering methods. In: 2018 international conference on inventive research in computing applications (ICIRCA). 2018. p. 210–13. https://doi.org/10.1109/ICIRCA.2018.8597371.

  24. Abdou MA. Literature review: efficient deep neural networks techniques for medical image analysis. Neural Comput Appl. 2022;34(8):5791–812. https://doi.org/10.1007/s00521-022-06960-9.

    Article  Google Scholar 

  25. Wang J, Zhu H, Wang S-H, Zhang Y-D. A review of deep learning on medical image analysis. Mob Netw Appl. 2020;26(1):351–80. https://doi.org/10.1007/s11036-020-01672-7.

    Article  Google Scholar 

  26. Yadav R, Pandey M. Image segmentation techniques: a survey. In: Gupta D, Polkowski Z, Khanna A, Bhattacharyya S, Castillo O, editors. Proceedings of data analytics and management. Singapore: Springer; 2022. p. 231–9. https://doi.org/10.1007/978-981-16-6289-8_20.

  27. Siddiqui FU, Yahya A. Introduction to image segmentation and clustering. Cham: Springer; 2022. p. 1–34. https://doi.org/10.1007/978-3-030-81230-0_1.

    Book  Google Scholar 

  28. Narayan V, Faiz M, Mall PK, Srivastava S. A comprehensive review of various approach for medical image segmentation and disease prediction. Wirel Pers Commun. 2023;132(3):1819–48. https://doi.org/10.1007/s11277-023-10682-z.

    Article  Google Scholar 

  29. Aouat S, Ait-hammi I, Hamouchene I. A new approach for texture segmentation based on the gray level co-occurrence matrix. Multimed Tools Appl. 2021. https://doi.org/10.1007/s11042-021-10634-4.

    Article  Google Scholar 

  30. Versaci M, Morabito FC. Image edge detection: a new approach based on fuzzy entropy and fuzzy divergence. Int J Fuzzy Syst. 2021;23(4):918–36. https://doi.org/10.1007/s40815-020-01030-5.

    Article  Google Scholar 

  31. Kumar S, Upadhyay AK, Dubey P, Varshney S. Comparative analysis for edge detection techniques. In: 2021 international conference on computing, communication, and intelligent systems (ICCCIS). 2021. p. 675–81. https://doi.org/10.1109/ICCCIS51004.2021.9397225

  32. Guru Prasad MS, Naveen Kumar HN, Raju K, Santhosh Kumar DK, Chandrappa S. Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images. SN Comput Sci. 2023. https://doi.org/10.1007/s42979-022-01592-1.

    Article  Google Scholar 

  33. Jardim S, António J, Mora C. Image thresholding approaches for medical image segmentation–short literature review. Proc Comput Sci. 2023;219:1485–92. https://doi.org/10.1016/j.procs.2023.01.439. (CENTERIS—International Conference on ENTERprise Information Systems/ProjMAN—International Conference on Project MANagement/HCist—International Conference on Health and Social Care Information Systems and Technologies 2022).

    Article  Google Scholar 

  34. Jiao J, Wang X, Zhang J, Wang Q. Salient region growing based on gaussian pyramid. IET Image Proc. 2021;15(13):3142–52. https://doi.org/10.1049/ipr2.12307.

    Article  Google Scholar 

  35. Sheela CJ, Suganthi G. Morphological edge detection and brain tumor segmentation in magnetic resonance (mr) images based on region growing and performance evaluation of modified fuzzy c-means (fcm) algorithm. Multimed Tools Appl. 2020;79(25–26):17483–96. https://doi.org/10.1007/s11042-020-08636-9.

    Article  Google Scholar 

  36. Kotaridis I, Lazaridou M. Remote sensing image segmentation advances: a meta-analysis. ISPRS J Photogramm Remote Sens. 2021;173:309–22. https://doi.org/10.1016/j.isprsjprs.2021.01.020.

    Article  Google Scholar 

  37. Goyal R. Punam: a survey of diverse segmentation methods in image processing. In: 2022 IEEE international conference on current development in engineering and technology (CCET). 2022. p. 1–5. https://doi.org/10.1109/CCET56606.2022.10080413.

  38. Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on pspnet. Comput Methods Programs Biomed. 2021;200:105897. https://doi.org/10.1016/j.cmpb.2020.105897.

    Article  Google Scholar 

  39. Gao Q, **ang J, Hou S, Tang H, Zhong Y, Ye S. Method using l-kurtosis and enhanced clustering-based segmentation to detect faults in axial piston pumps. Mech Syst Signal Process. 2021;147:107130. https://doi.org/10.1016/j.ymssp.2020.107130.

    Article  Google Scholar 

  40. Xu G, Zhou J, Dong J, Chen CL, Zhang T, Chen L, Han S, Wang L, Chen Y. Multivariate morphological reconstruction based fuzzy clustering with a weighting multi-channel guided image filter for color image segmentation. Int J Mach Learn Cybern. 2020;11(12):2793–806. https://doi.org/10.1007/s13042-020-01151-1.

    Article  Google Scholar 

  41. Nie F, Li Z, Wang R, Li X. An effective and efficient algorithm for k-means clustering with new formulation. IEEE Trans Knowl Data Eng. 2023;35(4):3433–43. https://doi.org/10.1109/TKDE.2022.3155450.

    Article  Google Scholar 

  42. Ramos L, Bermeo M, Amaro IR. Uncovering the effects of the Russia–Ukraine conflict on cryptocurrencies: a data-driven analysis with clustering and biplot techniques. In: Maldonado-Mahauad J, Herrera-Tapia J, Zambrano-Martínez JL, Berrezueta S, editors. Information and communication technologies. Cham: Springer; 2023. p. 3–21. https://doi.org/10.1007/978-3-031-45438-7_1.

  43. Shirani Faradonbeh R, Shaffiee Haghshenas S, Taheri A, Mikaeil R. Application of self-organizing map and fuzzy c-mean techniques for rockburst clustering in deep underground projects. Neural Comput Appl. 2019;32(12):8545–59. https://doi.org/10.1007/s00521-019-04353-z.

    Article  Google Scholar 

  44. Xu J, Zhao T, Feng G, Ni M, Ou S. A fuzzy c-means clustering algorithm based on spatial context model for image segmentation. Int J Fuzzy Syst. 2020;23(3):816–32. https://doi.org/10.1007/s40815-020-01015-4.

    Article  Google Scholar 

  45. Cohen-addad V, Kanade V, Mallmann-trenn F, Mathieu C. Hierarchical clustering: objective functions and algorithms. J ACM. 2019. https://doi.org/10.1145/3321386.

    Article  MathSciNet  Google Scholar 

  46. Chowdhury A, Pal A, Raut A, Kumar M. Kihcdp: an incremental hierarchical clustering approach for iot data using Dirichlet process. IEEE Access. 2024. https://doi.org/10.1109/ACCESS.2024.3385628.

    Article  Google Scholar 

  47. Ghadiri SME, Mazlumi K. Adaptive protection scheme for microgrids based on som clustering technique. Appl Soft Comput. 2020;88:106062. https://doi.org/10.1016/j.asoc.2020.106062.

    Article  Google Scholar 

  48. Dhal KG, Das A, Ray S, Gálvez J, Das S. Histogram equalization variants as optimization problems: a review. Arch Comput Methods Eng. 2020;28(3):1471–96. https://doi.org/10.1007/s11831-020-09425-1.

    Article  Google Scholar 

  49. Hu A, Razmjooy N. Brain tumor diagnosis based on metaheuristics and deep learning. Int J Imaging Syst Technol. 2020;31(2):657–69. https://doi.org/10.1002/ima.22495.

    Article  Google Scholar 

  50. Yuan S, Qing X, Hang B, Qu H. Quantum color image median filtering in the spatial domain: Theory and experiment. Quantum Inf Process. 2022. https://doi.org/10.1007/s11128-022-03660-0.

    Article  MathSciNet  Google Scholar 

  51. Nnolim UA. Automated crack segmentation via saturation channel thresholding, area classification and fusion of modified level set segmentation with canny edge detection. Heliyon. 2020;6(12):05748. https://doi.org/10.1016/j.heliyon.2020.e05748.

    Article  Google Scholar 

  52. Dhillon D, Chouhan R. Enhanced edge detection using sr-guided threshold maneuvering and window map**: handling broken edges and noisy structures in canny edges. IEEE Access. 2022;10:11191–205. https://doi.org/10.1109/ACCESS.2022.3145428.

    Article  Google Scholar 

  53. Kahra M, Sridhar V, Breuß M. Fast morphological dilation and erosion for grey scale images using the Fourier transform. In: Elmoataz A, Fadili J, Quéau Y, Rabin J, Simon L, editors. Scale space and variational methods in computer vision. Cham: Springer; 2021. p. 65–77. https://doi.org/10.1007/978-3-030-75549-2_6.

  54. Aouad T, Talbot H. Binary morphological neural network. In: 2022 IEEE international conference on image processing (ICIP). 2022. p. 3276–80. https://doi.org/10.1109/ICIP46576.2022.9897474.

  55. Kang D, Park S, Paik J. Sdban: salient object detection using bilateral attention network with dice coefficient loss. IEEE Access. 2020;8:104357–70. https://doi.org/10.1109/ACCESS.2020.2999627.

    Article  Google Scholar 

  56. Yeung M, Rundo L, Nan Y, Sala E, Schönlieb C-B, Yang G. Calibrating the dice loss to handle neural network overconfidence for biomedical image segmentation. J Digit Imaging. 2022;36(2):739–52. https://doi.org/10.1007/s10278-022-00735-3.

    Article  Google Scholar 

  57. Chen Z, Wang X, ** Z, Li B, Jiang D, Wang Y, Jiang M, Zhang D, Yuan P, Zhao Y, et al. Deep learning on tertiary lymphoid structures in hematoxylin-eosin predicts cancer prognosis and immunotherapy response. npj Precis Oncol. 2024. https://doi.org/10.1038/s41698-024-00579-w.

    Article  Google Scholar 

  58. Liang Z, Zhang Z, Zhang M, Zhao X, Pu S. Rangeioudet: range image based real-time 3d object detector optimized by intersection over union. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). 2021. p. 7136–45. https://doi.org/10.1109/CVPR46437.2021.00706.

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Ramos.

Ethics declarations

Conflict of Interest

The authors have no relevant financial interests in the manuscript and no other potential conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, L., Pineda, I. A Semiautomatic Image Processing-Based Method for Binary Segmentation of Lungs in Computed Tomography Images. SN COMPUT. SCI. 5, 689 (2024). https://doi.org/10.1007/s42979-024-03047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03047-1

Keywords

Navigation