Log in

Alz-ConvNets for Classification of Alzheimer Disease Using Transfer Learning Approach

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Alzheimer disease (AD) is a progressive brain disorder that gradually deprives patients of their basic abilities. Despite the absence of specific treatments, early detection of this neurodegenerative disease can slow its progression and prevent further deterioration. AD can manifest in different stages, including non-demented (nD), mildly demented (mD), moderately demented (moD), and very mildly demented (vmD) which are taken from the Kaggle repository naming [Alzheimer dataset (4 class of Images)]. To classify these stages, we utilized various convolutional network models such as Alz-DenseConvNet, Alz-ResConvNet, Alz-VGGConvNet, Alz-MobileConvNet, and Alz-XceptionConvNet. Both binary and multiclass classification is performed to classify the different stages of AD. After testing and validation, Alz-MobileConvNet was found to be the superior method for multiclass classification with an accuracy (Acc) of 94%. On the other hand, Alz-VGGConvNet surpassed other methods for binary classification with an effective Acc of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data set is available on online Kaggle Repository. The link for the Repository is https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images.

References

  1. Shahbaz, M., Ali, S., Guergachi, A., Niazi, A., & Umer, A. Classification of Alzheimer's Disease using Machine Learning Techniques. In Data (pp. 296–303). 2019.

  2. Aderghal K, Afdel K, Benois-Pineau J, et al. Improving Alzheimer’s stage categorization with convolutional neural network using transfer learning and different magnetic resonance imaging modalities. Heliyon. 2020;6(12): e05652.

    Article  Google Scholar 

  3. Basaia S, Agosta F, Wagner L, et al. Automated classification of AD and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 2019;21:101645.

    Article  Google Scholar 

  4. Li H, Fan Y. Early prediction of AD dementia based on baseline hippocampal MRI and 1-year follow-up cognitive measures using deep recurrent neural networks. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019); 2019. p. 368–371.

  5. Nanni L, Interlenghi M, Brahnam S, et al. Comparison of transfer learning and conventional ml applied to structural brain MRI for the early diagnosis and prognosis of Alzheimer’s disease. Front Neurol. 2020. https://doi.org/10.3389/fneur.2020.576194.

    Article  Google Scholar 

  6. Al-Hameed S, Benaissa M, Christensen H (2017) Detecting and predicting AD severity in longitudinal acoustic data. In: Proceedings of the international conference on bioinformatics research and applications; 2017. p. 57–61.

  7. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Remuzzi G. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    Article  Google Scholar 

  8. König A, Satt A, Sorin A, Hoory R, Toledo-Ronen O, Derreumaux A, David R. Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer Dement Diagn Assess Dis Monit. 2015;1(1):112–24.

    Google Scholar 

  9. Association A, Thies W, Bleiler L. 2013 ADfacts and figures. Alzheimers Dement. 2013;9(2):208–45.

    Article  Google Scholar 

  10. Perdisci R, Giacinto G, Roli F. Alarm clustering for intrusion detection systems in computer networks. Eng Appl Artif Intell. 2006;19(4):429–438.

  11. Satt A, Hoory R, König A, Aalten P, Robert PH (2014) Speech-based automatic and robust detection of very early dementia. In: Fifteenth Annual Conference of the International Speech Communication Association.

  12. Kilicarslan S, Celik M, Sahin Ş. Hybrid models based on genetic algorithm and DL algorithms for nutritional Anemia disease classification. Biomed Signal Process Control. 2021;63: 102231.

    Article  Google Scholar 

  13. Islam J, Zhang Y. Brain MRI analysis for ADdiagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018;5(2):1–14.

    Article  Google Scholar 

  14. Battineni G, Chintalapudi N, Amenta F. ML in medicine: performance calculation of dementia prediction by support vector machines (SVM). Inform Med Unlocked. 2019;16:100200.

    Article  Google Scholar 

  15. Tong J, Dou Q, Yang H, Jeon G, Yang X. Lightweight refined networks for single image super-resolution. Multimed Tools Appl. 2022;81(3):3439–58.

    Article  Google Scholar 

  16. Zhao X, Ang CKE, Acharya UR, Cheong KH. Application of Artificial Intelligence techniques for the detection of AD using structural MRI images. Biocybern Biomed Eng. 2021;41(2):456–73.

    Article  Google Scholar 

  17. Jo T, Nho K, Saykin AJ. DL in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. 2019;11:220.

    Article  Google Scholar 

  18. Cuddy LL, Duffin J. Music, memory, and Alzheimer’s disease: is music recognition spared in dementia, and how can it be assessed? Med Hypotheses. 2005;64(2):229–35.

    Article  Google Scholar 

  19. Wang J, Wang X, He Y, Yu X, Wang H, He Y. Apolipoprotein E ε4 modulates functional brain connectome in Alzheimer’s disease. Hum Brain Mapp. 2015;36(5):1828–46.

    Article  Google Scholar 

  20. Nissar I, Rizvi DR, Masood S, Mir AN. Voice-based detection of Parkinson’s disease through ensemble ML approach: a performance study. EAI Endorsed Trans Pervasive Health Technol. 2019;5(19):e2–e2.

    Article  Google Scholar 

  21. Alqubati G, Algaphari G. ML and DL-based approaches on various biomarkers for AD early detection: a review. Int J Softw Eng Comput Syst. 2021;7(2):26–43.

    Article  Google Scholar 

  22. Kang MJ, Kim SY, Na DL, Kim BC, Yang DW, Kim EJ, Youn YC. Prediction of cognitive impairment via DL trained with multi-center neuropsychological test data. BMC Med Inform Decis Mak. 2019;19(1):1–9.

    Article  Google Scholar 

  23. Loddo A, Buttau S, Di Ruberto C. DL based pipelines for AD diagnosis: a comparative study and a novel deep-ensemble method. Comput Biol Med. 2022;141: 105032.

    Article  Google Scholar 

  24. Camps J, Sama A, Martin M, Rodriguez-Martin D, Perez-Lopez C, Arostegui JMM, Rodriguez-Molinero A. DL for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl Based Syst. 2018;139:119–31.

    Article  Google Scholar 

  25. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Tontonoz P. Attenuation of neuroinflammation and AD pathology by liver x receptors. Proc Natl Acad Sci. 2007;104(25):10601–6.

    Article  Google Scholar 

  26. Al-Hagery MA, Al-Fairouz EI, Al-Humaidan NA. Improvement of AD diagnosis accusing ensemble methods. Indones J Electr Eng Inform (IJEEI). 2020;8(1):132–9.

    Google Scholar 

  27. Au A, Li S, Lee K, Leung P, Pan PC, Thompson L, Gallagher-Thompson D. The co** with caregiving group program for Chinese caregivers of patients with AD in Hong Kong. Patient Educ Couns. 2010;78(2):256–60.

    Article  Google Scholar 

  28. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. DL for brain MRI segmentation: state of the art and future directions. J Digit Imaging. 2017;30(4):449–59.

    Article  Google Scholar 

  29. Lee G, Nho K, Kang B, Sohn KA, Kim D. Predicting AD progression using multi-modal DL approach. Sci Rep. 2019;9(1):1–12.

    Google Scholar 

  30. Yang SJ, Shin H, Lee SH, et al. Functional linear regression model with randomly censored data: predicting conversion time to Alzheimer’s disease. Comput Stat Data Anal. 2020;150: 107009.

    Article  MathSciNet  MATH  Google Scholar 

  31. Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from AD pathology. Neurology. 2004;62(7):1148–55.

    Article  Google Scholar 

  32. Cao P, Shan X, Zhao D, et al. Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer’s disease. Pattern Recogn. 2017;72:219–35.

    Article  Google Scholar 

  33. Lei B, Yang M, Yang P, et al. Deep and joint learning of longitudinal data for ADprediction. Pattern Recogn. 2020;102: 107247.

    Article  Google Scholar 

  34. Teipel SJ, Kurth J, Krause B, et al. The relative importance of imaging markers for the prediction of AD dementia in mild cognitive impairment—beyond classical regression. Neuroimage Clin. 2015;8:583–93.

    Article  Google Scholar 

  35. Moradi E, Hallikainen I, Hänninen T, et al. Rey’s auditory verbal learning test scores can be predicted from whole brain MRI in Alzheimer’s disease. Neuroimage Clin. 2017;13:415–27.

    Article  Google Scholar 

  36. Luk CC, Ishaque A, Khan M, et al. Alzheimer’s disease: 3-dimensional MRI texture for prediction of conversion from mild cognitive impairment. Alzheimers Dement Diagn Assess Dis Monit. 2018;10:755–63.

    Google Scholar 

  37. Zhou T, Thung KH, Liu M, et al. Brain-wide genome-wide association study for AD via joint projection learning and sparse regression model. IEEE Trans Biomed Eng. 2018;66(1):165–75.

    Article  Google Scholar 

  38. Wei R, Li C, Fogelson N, et al. Prediction of conversion from mild cognitive impairment to ADusing MRI and structural network features. Front Aging Neurosci. 2016;8:76.

    Article  Google Scholar 

  39. Huang L, ** Y, Gao Y, et al. Longitudinal clinical score prediction in AD with soft-split sparse regression based random forest. Neurobiol Aging. 2016;46:180–91.

    Article  Google Scholar 

  40. Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, Mehmood Z. A DL approach for automated diagnosis and multi-class classification of AD stages using resting-state fMRI and residual neural networks. J Med Syst. 2019;44:37.

    Article  Google Scholar 

  41. Classification and visualization of AD using volumetric convolutional neural network and transfer Learning|Scientific reports. https://www.nature.com/articles/s41598-019-54548-6. Accessed 13 Sept 2020.

  42. Ghazal TM, Issa G. Alzheimer disease detection empowered with transfer learning. Comput Mater Contin. 2022;70(3):5005–19.

    Google Scholar 

  43. Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Yaqub M. A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images. Neuroscience. 2021;460:43–52.

    Article  Google Scholar 

  44. Naz S, Ashraf A, Zaib A. Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset. Multimed Syst. 2022;28(1):85–94.

    Article  Google Scholar 

  45. Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M. Deep transfer learning for alzheimer neurological disorder detection. Multimed Tools Appl. 2021;80:1–26.

    Article  Google Scholar 

  46. Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE J Biomed Health Inform. 2021;26(4):1453–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Shukla.

Ethics declarations

Conflict of Interest

No conflict of interest is disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Cyber Security and Privacy in Communication Networks” guest edited by Rajiv Misra, R K Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana, Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Tiwari, R. & Tiwari, S. Alz-ConvNets for Classification of Alzheimer Disease Using Transfer Learning Approach. SN COMPUT. SCI. 4, 404 (2023). https://doi.org/10.1007/s42979-023-01853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01853-7

Keywords

Navigation