Log in

A Sensor Ranking Approach for Edge–Fog–Cloud Environments

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This research work presents a method for ranking sensors using the data produced by these devices. The method classifies the data, identifying the occurrence of failures in sensors and anomalies in the environments, aiming to maintain a reliability-based sensor ranking list. To generate the ranking list, overcoming the challenges implicit in this activity, the method adopts the theory of active perception as a basis. This approach divides the perception activity into levels that progressively add more sense to the information generated by the sensor, thus providing more reliability to the task of classifying the data generated by the sensors, without spending resources. This step allows you to create the ranking list in which the most reliable sensors will be at the top of the list. This list is managed through a distributed hash table to meet the distributed requirement of the Internet-of-Things (IoT) environment. The proposal was evaluated using four real data sets. The results of this research demonstrate that the proposed approach can provide high reliability in the use of sensor data, using low computational resources and, thus, reducing latency in the processes of selection and use of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All datasets are available at the following link: https://github.com/felipekosta/SNCS_datasets.

Notes

  1. Mica2Dot is a board used to enable low-power wireless sensor networks that allows connecting various types of sensors.

References

  1. Yuen KKF, Wang W. Towards a ranking approach for sensor services using primitive cognitive network process. In: The 4th annual IEEE international conference on cyber technology in automation, control and intelligent, Hong Kong, China: 2014, p. 5. https://doi.org/10.1109/CYBER.2014.6917487.

  2. Sezer OB, Dogdu E, Ozbayoglu AM. Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 2018;5:27. https://doi.org/10.1109/JIOT.2017.2773600.

    Article  Google Scholar 

  3. Turner V. The digital universe of opportunities: rich data and the increasing value of the internet of things 2014. https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Accessed 12 Sept 2018.

  4. Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, Helsinki, Finland: ACM; 2012, p. 13–6. https://doi.org/10.1145/2342509.2342513.

  5. Stojmenovic I, Wen S. The fog computing paradigm: scenarios and security issues. In: Proceedings of the 2014 federated conference on computer science and information systems, Warsaw, Poland: 2014, p. 1–8.

  6. Mitchell HB. Multi-sensor data fusion: an introduction. Berlin: Springer; 2007.

    Google Scholar 

  7. Costa FS, Nassar SM, Dantas MAR. A three level sensor ranking method based on active perception. In: IECON 2019 - 45th annual conference of the IEEE industrial electronics society, vol. 1, Lisbon, Portugal: IEEE; 2019, p. 2889–95. https://doi.org/10.1109/IECON.2019.8927612.

  8. Kertiou I, Benharzallah S, Kahloul L, Beggas M, Euler R, Laouid A, et al. A dynamic skyline technique for a context-aware selection of the best sensors in an IoT architecture. Ad Hoc Netw. 2018;81:14. https://doi.org/10.1016/j.adhoc.2018.08.011.

    Article  Google Scholar 

  9. Pattar S, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM. Searching for the IoT resources: fundamentals, requirements, comprehensive review, and future directions. IEEE Commun Surv Tutor. 2018;20:31. https://doi.org/10.1109/COMST.2018.2825231.

    Article  Google Scholar 

  10. Fathy Y, Barnaghi P, Tafazolli R. Large-scale indexing, discovery, and ranking for the internet of things (IoT). ACM Comput Surv. 2018;51:53. https://doi.org/10.1145/3154525.

    Article  Google Scholar 

  11. **ao B, Rahmani R, Li Y, Gillblad D, Kanter T. Intelligent data-intensive IoT: a survey. In: Procedings of 2nd IEEE international conference on computer and communications (ICCC), Chengdu, China: 2016, p. 2362–8. https://doi.org/10.1109/CompComm.2016.7925122.

  12. NSF. NSF Edge Workshop Report. Washington, DC, USA: NATIONAL SCIENCE FOUNDATION; 2016.

  13. Costa F, Nassar S, Dantas M. GoAT: A sensor ranking approach for IoT environments. In: Proceedings of the 11th international conference on cloud computing and services science - CLOSER, Florida, USA: 2021, p. 169–77.

  14. Skarmeta AF, Santa J, Martínez JA, Parreira JX, Barnaghi P, Enshaeifar S, et al. IoTCrawler: Browsing the internet of things. In: Proceedings of the 2018 global IoT summit (GIoTS), Bilbao, Spain: Institute of Electrical and Electronics Engineers (IEEE); 2018, p. 6.

  15. Nesa N, Banerjee I. SensorRank: An energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet Things J. 2019;6:2532–9. https://doi.org/10.1109/JIOT.2018.2871469.

    Article  Google Scholar 

  16. Dautov R, Distefano S. Automating IoT data-intensive application allocation in clustered edge computing. IEEE Trans Knowl Data Eng. 2019. https://doi.org/10.1109/TKDE.2019.2923638.

    Article  Google Scholar 

  17. Ruta M, Scioscia F, Pinto A, Gramegna F, Ieva S, Loseto G, et al. CoAP-based collaborative sensor networks in the semantic web of things. J Ambient Intell Hum Comput. 2019;10:18. https://doi.org/10.1007/s12652-018-0732-4.

    Article  Google Scholar 

  18. Kakunsi DC, Candra MZC. SDRank: An Adaptable Service Selection for IoT Based on Ranking. In: IEEE Mataram Indonesia: 2018, p. 6. https://doi.org/10.1109/ICODSE.2018.8705811.

  19. Dilli R, Argou A, Pilla M, Pernas AM, Reiser R, Yamin A. Fuzzy logic and MCDA in IoT resources classification. In: Proceedings of the 33rd annual ACM symposium on applied computing, New York, NY, USA: ACM; 2018, p. 6. https://doi.org/10.1145/3167132.3167216.

  20. Hussain N, Anees T, Azeem U. Development of a novel approach to search resources in IoT. Int J Adv Comput Sci Appl IJACSA. 2018;9:14. https://doi.org/10.14569/IJACSA.2018.090949.

    Article  Google Scholar 

  21. Nunes LH, Estrella JC, Perera C, Reiff-Marganiec S, Delbem ACB. The elimination-selection based algorithm for efficient resource discovery in Internet of Things environments. In: 2018 15th IEEE annual consumer communications networking conference (CCNC), 2018, p. 7. https://doi.org/10.1109/CCNC.2018.8319280.

  22. Kang H, Kim M, Bae M, Bang H-C, Yoe H. A conceptual device-rank based resource sharing and collaboration of smart things. Multimed Tools Appl. 2016;75:13.

    Article  Google Scholar 

  23. Zhang P, Liu Y, Wu F, Liu S, Tang B. Low-overhead and high-precision prediction model for content-based sensor search in the Internet of Things. IEEE Commun Lett. 2016;20:4. https://doi.org/10.1109/LCOMM.2016.2521735.

    Article  Google Scholar 

  24. Saxena S. Vector method for ranking of sensors in IoT. IEEE, vol. 3, Coimbatore, India: 2016, p. 5. https://doi.org/10.1109/INVENTIVE.2016.7830231.

  25. Wang W, Yao F, De S, Moessner K, Sun Z. A ranking method for sensor services based on estimation of service access cost. Inf Sci. 2015;319:17. https://doi.org/10.1016/j.ins.2015.05.029.

    Article  Google Scholar 

  26. Cabral L, Compton M, Müller H, et al. A use case in semantic modelling and ranking for the sensor web. In: Mika P, Tudorache T, Bernstein A, Welty C, Knoblock C, Vrandečić D, et al., editors. 13th International semantic web conference. Riva Del Garda, Italy: Springer International Publishing; 2014. p. 15.

    Google Scholar 

  27. Niu W, Lei J, Tong E, Li G, Chang L, Shi Z, et al. Context-aware service ranking in wireless sensor networks. J Netw Syst Manag. 2014;22:25. https://doi.org/10.1007/s10922-012-9259-8.

    Article  Google Scholar 

  28. Perera C, Zaslavsky A, Liu CH, Compton M, Christen P, Georgakopoulos D. Sensor search techniques for sensing as a service architecture for the Internet of Things. IEEE Sens J. 2014;14:406–20. https://doi.org/10.1109/JSEN.2013.2282292.

    Article  Google Scholar 

  29. Truong C, Römer K, Chen K. Fuzzy-based sensor search in the Web of Things. IEEE, Wuxi, China: 2012, p. 8.

  30. Walters J, Österberg P, Kanter T. The MediaSense framework: ranking sensors in a distributed architecture. In: Proceddings of fifth international conference on digital telecommunications, the updated MediaSense Framework, Athens, Greece: IEEE conference proceedings; 2011, p. 5.

  31. Wang H, Tan CC, Li Q. Snoogle: a search engine for pervasive environments. IEEE Trans Parallel Distrib Syst. 2010;21:15. https://doi.org/10.1109/TPDS.2009.145.

    Article  Google Scholar 

  32. Elahi BM, Romer K, Ostermaier B, Fahrmair M, Kellerer W. Sensor ranking: a primitive for efficient content-based sensor search. IEEE, San Francisco, CA, USA: 2009, p. 12.

  33. Intel Lab Data n.d. http://db.csail.mit.edu/labdata/labdata.html. Accessed 20 Dec 2018.

  34. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining - KDD ’16, San Francisco, California, USA: ACM Press; 2016, p. 785–94.

  35. Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Comput Methods Programs Biomed. 2019;171:1–10. https://doi.org/10.1016/j.cmpb.2019.02.005.

    Article  Google Scholar 

  36. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41:1–58. https://doi.org/10.1145/1541880.1541882.

    Article  Google Scholar 

  37. Cecílio IM, Ottewill JR, Pretlove J, Thornhill NF. Nearest neighbors method for detecting transient disturbances in process and electromechanical systems. J Process Control. 2014;24:1382–93.

    Article  Google Scholar 

  38. Witten IH, Frank E, Hall MA. Data mining: practical machine learning tools and techniques. 3rd ed. Burlington: Morgan Kaufmann; 2011.

    Google Scholar 

  39. Barbetta PA, Bornia AC, Reis MM. Estatística Para Cursos De Engenharia E Informática. 3rd ed. São Paulo: Atlas; 2010.

    Google Scholar 

  40. Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–53. https://doi.org/10.1016/S0019-9958(65)90241-X.

    Article  MATH  Google Scholar 

  41. Buchholz T, Schiffers M. Quality of context: what it is and why we need it. In: Proceedings of the 10th workshop of the OpenView University Association: OVUA’03, 2003.

  42. Manzoor A, Truong H-L, Dustdar S. Quality of context: models and applications for context-aware systems in pervasive environments. Knowl Eng Rev. 2014;29:16. https://doi.org/10.1017/S0269888914000034.

    Article  Google Scholar 

  43. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor. 2014;16:40. https://doi.org/10.1109/SURV.2013.042313.00197.

    Article  Google Scholar 

  44. Cherbal S, Boukerram A, Boubetra A. A survey of DHT solutions in fixed and mobile networks. IJCNDS. 2016;17:14. https://doi.org/10.1504/IJCNDS.2016.077938.

    Article  Google Scholar 

  45. Apache Foundation. Apache Cassandra Project n.d. http://cassandra.apache.org/. Accessed 21 Sept 2020.

  46. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for internet applications. In: Proceedings of the 2001 conference on applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’01, vol. 31, New York, NY, USA: ACM Press; 2001, p. 149–60. https://doi.org/10.1145/383059.383071.

  47. Hofmann A, Robertson P. Active perception: improving perception robustness by reasoning about context. vol. 2, 2015, p. 9.

  48. Bajcsy R. Active perception. Proc IEEE. 1988;76:10. https://doi.org/10.1109/5.5968.

    Article  Google Scholar 

  49. Biel L, Wide P. Active perception for autonomous sensor systems. IMM. 2000;3:4. https://doi.org/10.1109/5289.887457.

    Article  Google Scholar 

  50. Schiffman HR. Sensation and Perception: An Integrated Approach. Sensation and Perception: An Integrated Approach. Edição: 5th, New York: John Wiley & Sons; 2001, p. 12.

  51. Bevrani H. Robust power system frequency control. New York: Springer; 2009.

    Book  MATH  Google Scholar 

  52. Thornhill NF. Finding the source of nonlinearity in a process with plant-wide oscillation. IEEE Trans Control Syst Technol. 2005;13:434–43.

    Article  Google Scholar 

  53. Bringel Filho J, Agoulmine N. A quality-aware approach for resolving context conflicts in context-aware systems. In: 9th international conference on embedded and ubiquitous computing, Melbourne, VIC, Australia: 2011, p. 229–36. https://doi.org/10.1109/EUC.2011.9.

  54. Costa FS, Nassar SM, Gusmeroli S, Schultz R, Conceição AGS, Xavier M, et al. FASTEN IIoT: an open real-time platform for vertical, horizontal and end-to-end integration. Sensors. 2020;20:5499.

    Article  Google Scholar 

  55. Drath R, Horch A. Industrie 4.0: hit or hype? [industry forum]. IEEE Ind Electron Mag. 2014;8:56–8. https://doi.org/10.1109/MIE.2014.2312079.

    Article  Google Scholar 

  56. Octavo LA. VerneMQ - A MQTT broker that is scalable, enterprise ready, and open source 2019. https://vernemq.com/. Accessed 1 Aug 2019.

  57. Apache. Apache Kafka. Apache Kafka 2019. https://kafka.apache.org/. Accessed 1 Aug 2019.

  58. Zamry NM, Zainal A, Rassam M. Unsupervised anomaly detection for unlabelled wireless sensor networks data. Int J Adv Soft Comput Its Appl. 2018;10:172–91.

    Google Scholar 

  59. NOAA n.d. https://tidesandcurrents.noaa.gov/gmap3/. Accessed 20 Dec 2018.

  60. Ingelrest F, Barrenetxea G, Schaefer G, Vetterli M, Couach O, Parlange M. SensorScope: Application-specific sensor network for environmental monitoring. ACM Trans Sen Netw. 2010;6:17:1-17:32.

    Article  Google Scholar 

Download references

Funding

This research is funded by the Federal University of Santa Catarina and by the Federal Institute of Santa Catarina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe S. Costa.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Cloud Computing and Services Science” guest edited by Donald Ferguson, Markus Helfert and Claus Pahl.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, F.S., Nassar, S.M. & Dantas, M.A.R. A Sensor Ranking Approach for Edge–Fog–Cloud Environments. SN COMPUT. SCI. 4, 392 (2023). https://doi.org/10.1007/s42979-023-01826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01826-w

Keywords

Navigation