Log in

A comparative appraisal of three important oil yielding plants for their biodiesel potential

  • Review
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

In the present scenario, alternative energy sources are required to achieve the future economic prosperity where shortage of fossil fuels will be a limiting factor and hamper the global economic growth. Therefore, interest in biofuel is increasing continuously. The best way of sustainable development is fossil fuel supplementation with biodiesel to reduce the fossil fuel demand. Biodiesel is a clean burning, ester-based, oxygenated fuel derived from natural and renewable sources. Till now, majority of the people have worked on the biodiesel derived from edible oil. Instead of using edible oil, non-edible oil needs to be explored as feedstock for biofuel because half of the world’s population is unable to afford the food oil as feedstock for fuel production. Looking at the significance of biodiesel and the resources of biofuel, in this paper, a comparative exhaustive study has been reported with for three important plants, namely Jatropha curcas, Pongemia pinnata and Balanites aegyptiaca. These plants were selected based on their biodiesel potential, availability, cultivation practices and general information available. The present study involves scientometric publications, comparison of fatty acid composition and biodiesel parameters. We have also compared climatic conditions for the growth of the plants, economic feasibility of biodiesel production and other ecological services. The study paves a way for sustainable solution to policy makers and foresters looking for selection of plant species as bioenergy resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: SCOPUS)

Similar content being viewed by others

References

  • Abasse T, Weber JC, Katkore B, Boureima M, Larwanou M, Kalinganire A (2011) Morphological variation in Balanites aegyptiaca fruits and seeds within and among parkland agroforests in eastern Niger. Agrofor Syst 81:57–66

    Article  Google Scholar 

  • Abugre S, Sam SJQ (2010) Evaluating the allelopathic effect of Jatropha curcas aqueous extract on germination, radicle and plumule length of crops. Int J Agric Biol 12:769–772

    Google Scholar 

  • Ahmed MM, Eid MM (2015) Evaluation of Balanites aegyptiaca oil as non-traditional source of oil and its anti-inflammatory activity. J Drug Res Egypt 36:1–1

    Google Scholar 

  • Ali MS, Mandal MP (2009) Effect of aqueous extracts of Jatropha and Karanja leaves on germination and seedling growth of mung (Vigna radiata). J Trop for Sci 25:27–31

    Google Scholar 

  • Antonelli J, Lindino CA, Bariccatti RA, de Souza SN, Nadaletti WC, Rossi E (2016) Allelopathic effect of irrigation with different concentrations of leaf extracts of Jatropha curcas L. on growth Brassica oleracea. Afr J Agric Res 11:779–782

    Article  Google Scholar 

  • Arpiwi NL, Yan G, Barbour EL, Plummer JA (2013) Genetic diversity, seed traits and salinity tolerance of Millettia pinnata (L.) Panigrahi, a biodiesel tree. Genet Resour Crop Ev 60:677–692

    Article  Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sust Energ Rev 18:211–245

    Article  CAS  Google Scholar 

  • Axtell BL, Fairman, RM (1992) Minor oil crops. Part I-Edible oils. Part II-Non-edible oils. Part III-Essential oils, FAO, Rome Agricultural Services Bulletin No. 94.

  • Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302

    Article  Google Scholar 

  • Bala M, Nag TN, Kumar S, Vyas M, Kumar A, Bhogal NS (2011) Proximate composition and fatty acid profile of Pongamia pinnata, a potential biodiesel crop. J Am Oil Chem Soc 88:559–562

    Article  CAS  Google Scholar 

  • Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals. Wiley

    Book  Google Scholar 

  • Baruah U, Das K, Kotoky U, Chack S (2018) Allelopathic Effect of jatropha (Jatropha curcas) on chilli (Capsicum annum) and green gram (Vigna radiata). Int J Curr Microbiol App Sci 7:968–985

    Article  Google Scholar 

  • Bayen P, Bognounou F, Lykke AM, Ouédraogo M, Thiombiano A (2016) The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environ Dev Sustain 18:143–156

    Article  Google Scholar 

  • Beniwal, RS and Chauhan, R. (2011) Pongamia pinnata as an alternative source of renewable energy. Asia-Pacific Agroforestry Newsletter (FAO) No. 38: 14–15

  • Bhandari MM (1990) Flora of the Indian desert. MPS Repros, Jodhpur.

  • Birajdar S, Chimkod V, Patil CS (2011) Phytochemical screening and characterization of Pongamia pinnata (L) seed oil. Int J Pharma Anal 3:17

    Google Scholar 

  • Bohre P, Chaubey OP, Singhal PK (2014) Biomass production and carbon sequestration by Pongamia pinnata (Linn) Pierre in tropical environment. Int J Bio-Sci Bio-Tech 6:129–140

    Article  Google Scholar 

  • Booth FE M, Wickens GE (1988). Non-timber uses of selected arid zone trees and shrubs in Africa. FAO Conservation Guide 19. Food and Agriculture Organization of the United Nations, Rome

  • Chandrasekaran D, Kadirvel R, Viswanathan K (1989) Nutritive value of pungam (Pongamia glabra Vent) cake for sheep. Anim Feed Sci Technol 22:321–325

    Article  Google Scholar 

  • Chandrashekar LA, Mahesh NS, Gowda B, Hall W (2012) Life cycle assessment of biodiesel production from pongamia oil in rural Karnataka. Int J Agric Eng 14:67–77

    Google Scholar 

  • Chapagain B, Wiesman Z (2005) Larvicidal effects of aqueous extracts of Balanites aegyptiaca (desert date) against the larvae of Culex pipiens mosquitoes. Afr J Biotechnol 4:1351–1354

    Google Scholar 

  • Chapagain BP, Yehoshua Y, Wiesman Z (2009) Desert date (Balanites aegyptiaca) as an arid land sustainable bioresource for biodiesel. Bioresour Technol 100:1221–1226

    Article  CAS  PubMed  Google Scholar 

  • Chapman LJ, Chapman CA, Wrangham RW (1992) Balanites wilsoniana: elephant dependent dispersal? J Trop Ecol 8:275–283

    Article  Google Scholar 

  • Chattha JA, Bannikov MG, Iqbal S (2011) The performance and emissions of a direct injection diesel engine fueled with Pongamia pinnata methyl esters. Energ Source Part A 33:890–897

    Article  CAS  Google Scholar 

  • Chothani DL, Vaghasiya HU (2011) A review on Balanites aegyptiaca Del. (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn Rev 5:55–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Connolly D, Mathiesen BV, Ridjan I (2014) A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy 73:110–125

    Article  Google Scholar 

  • Dagar JC (2009) Opportunities for alternate land uses in salty and water scarcity areas. Int J Ecol Env Sci 35:53–66

    Google Scholar 

  • Dagar JC, Minhas PS (2016) Global perspectives on agroforestry for the management of salt-affected soils. In: Dagar JC, Minhas P (eds) Agroforestry for the management of waterlogged saline soils and poor-quality waters. Springer, New Delhi, pp 5–32

    Chapter  Google Scholar 

  • Dejene N (2017) Assessment of production and marketing systems, and on-farm evaluation of the effect of supplementation with Balanites aegyptica and maize grain on fattening performance and economic return of indigenous goats in Gamogofa zone (Doctoral dissertation, Hawassa University).

  • Deshmukh SJ, Bhuyar LB (2009) Transesterified Hingan (Balanites) oil as a fuel for compression ignition engines. Biomass Bioenerg 33:108–112

    Article  CAS  Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energ 87:732–742

    Article  CAS  Google Scholar 

  • Firmin R (1971) Afforestation: report to the government of Kuwait. FAO, Rome, p 29

    Google Scholar 

  • Foidl N, Eder P (1997) Agro-industrial exploitation of J. curcas. In: Giibitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha Curcas. DBV Graz. Pp 88–91

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24

    Article  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  • Ghumare P, Jirekar DB, Farooqui M, Naikwade SD (2014) A review of Pongamia pinnata–an important medicinal plant. Curr Res Pharm Sci 4(2):44–47

  • Gour VS, Datta M (2015) Soil carbon sequestration through desert date based forestry in arid and salt affected regions. Natl Acad Sci Lett 38:127–128

    Article  CAS  Google Scholar 

  • Gour VS, Sanadhya N, Sharma P, Parmar A, Datta M (2015) Biosurfactant characterization and its potential to remove sebum from hair. Ind Crop Prod 69:462–465

    Article  CAS  Google Scholar 

  • Gudeta TB (2016) Chemical composition, bio-diesel potential and uses of Jatropha curcas L. (Euphorbiaceae). Am J Agric for 4:35–48

    Google Scholar 

  • Hall JB (1992) Ecology of a key African multipurpose tree species, Balanites aegyptiaca (Balanitaceae): the state-of-knowledge. For Ecol Manag 50:1–30

    Article  Google Scholar 

  • Hansmann MM, Ruiz DA, Liu LL, Jazzar R, Bertrand G (2017) (Phosphanyl) phosphaketenes as building blocks for novel phosphorus heterocycles. Chem Sci 8:3720–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howes FN (1946) Fence and barrier plants in warm climates. Kew Bull 1:51–87

    Article  Google Scholar 

  • Hussain SA, Dollear FG, O’connor RT (1949) Oil from the kernels of lalob fruit, Balanites aegyptiaca. J Am Oil Chem Soc 26(12):730–732

    Article  CAS  Google Scholar 

  • Imadi SR, Kazi AG, Hashem A, Abd-Allah EF, Alqarawi AA, Ahmad P (2016) Medicinal plants under abiotic stress: an overview. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress. Wiley Balckwell, pp 300–310

    Google Scholar 

  • Islam AKM, Anuar N, Yaakob Z, Ghani JA, Osman M (2013) Combining ability for germination traits in Jatropha curcas L. Sci World J 935981:1–6. https://doi.org/10.1155/2013/935981

    Article  Google Scholar 

  • Jain S (2019) The current and future perspectives of biofuels. In Verma D, Fortunati E, Jain S, Zhang X (eds) Biomass, biopolymer based materials, and bioenergy. Woodhead Publishing, pp 495–517. https://doi.org/10.1016/B978-0-08-102426-3.00021-7

  • Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int 169797:1–17

    Article  Google Scholar 

  • Kesari V, Rangan L (2010) Development of Pongamia pinnata as an alternative biofuel crop—current status and scope of plantations in India. J Crop Sci Biotech 13:127–137

    Article  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Konwar BK, Banerjee GC, Mandal L (1984) Nutritive value of deoiled karanja cake (Pongamia glabra Vent.) in adult cattle. Indian J Anim Res 54:489–490

    Google Scholar 

  • Lohlum SA, Forcados EG, Agida OG, Ozele N, Gotep JG (2012) Enhancing the chemical composition of Balanites aegyptiaca seeds through ethanol extraction for use as a protein source in feed formulation. Sustain Agric Res 1:251–256

    Google Scholar 

  • Ma Y, Chun J, Wang S, Chen F (2011) Allelopathic potential of Jatropha curcas. Afr J Biotechnol 10:11932–11942

    CAS  Google Scholar 

  • Mahmoud A, Singh SD, Muralikrishna KS (2016) Allelopathy in jatropha plantation: effects on seed germination, growth and yield of wheat in north-west India. Agric Ecosyst Environ 23:240–245

    Article  Google Scholar 

  • Mandal L, Banerjee GC (1974) Extracted karanja cake (Pongamia glabra). A new feed ingredient for poultry. Indian Poultry Gaz 59:143–145

    Google Scholar 

  • Marriboina S, Sengupta D, Kumar S, Reddy AR (2017) Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species. Plant Sci 258:102–111

    Article  CAS  PubMed  Google Scholar 

  • Mitra M, Patidar SK, George B, Shah F, Mishra S (2015) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res 8:161–167

  • Mohamed AM, Wolf W, Spiess WEL (2002) Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels. Plant Foods Hum Nutr 57:179–189

    Article  CAS  PubMed  Google Scholar 

  • Montes CS, Silva DA, Garcia RA, De Muniz GIB, Weber JC (2011) Calorific value of Prosopis africana and Balanites aegyptiaca wood: relationships with tree growth, wood density and rainfall gradients in the West African Sahel. Biomass Bioenerg 35:346–353

    Article  Google Scholar 

  • Mukta N, Murthy IYLN, Sripal P (2009) Variability assessment in Pongamia pinnata (L.) Pierre germplasm for biodiesel traits. Ind Crops Prod 29:536–540

    Article  CAS  Google Scholar 

  • Murphy H, O’Connell D, Seaton G, Raison R, Rodriguez L, Braid A et al (2012) A common view of the opportunities, challenges and research actions for Pongamia in Australia. BioEnergy Res. 5:1–23

    Article  Google Scholar 

  • Ninfaa DA (2011) Postharvest handling of the edible parts (leaves and fruits) of the desert date (Balanites aegyptiaca): a Case Study in the Jirapa and Nadowli Districts of the Upper West Region Of Ghana (Doctoral dissertation) Kwame Nkrumah University of Science and Technology, Ghana

  • Ogori AF, Wakawa LD, Makinde OJ, Vivien OO (2017) Phytochemical properties of mechanically expelled pretreated balanites seed oil and cake. EC Nutr 8:55–60

    Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg 19:1–15

    Article  Google Scholar 

  • Panchariya V, Bhati V, Madhyastha H, Madhyastha R, Prasad J, Sharma P, Sharma P, Harish, Saini M K, Rajput V, Nakajima Y, Kothari SL, Gour VS (2021) Chromatic intervention and biocompatibility assay for biosurfactant derived from Balanites aegyptiaca (L.) Del. Sci Rep 11:4186. https://doi.org/10.1038/s41598-021-83573-7

  • Pandey VC, Singh K, Singh JS, Kumar A, Singh B, Singh RP (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sust Energ Rev 16:2870–2883

    Article  CAS  Google Scholar 

  • Patidar SK, Mishra SK, Bhattacharya S, Ghosh T, Paliwal C, Goel S, Mishra S (2015) Naturally floating microalgal mat for in situ bioremediation and potential for biofuel production. Algal Res 9:275–282

    Article  Google Scholar 

  • Phlomina NS, Srivasuki KP (1996) Allelopathic studies on agro-forestry species: effect of leaf leachates on seed germination of crop plants. Indian J for 19:45–53

    Google Scholar 

  • Pohit S, Biswas PK (2017) India’s biodiesel programme: status, prospects, and shortcomings. In: Chandel A, Sukumaran R (eds) Sustainable biofuels development in India. Springer, pp 247–259

    Chapter  Google Scholar 

  • Pullaiah T, Bahadur B (2013) Economic and medicinal importance of Jatrophas. In: Jatropha, challenges for a new energy crop. Springer, New York, NY, pp 187–217

  • Rahman MM, Netravali AN (2014) Green resin from forestry waste residue “Karanja (Pongamia pinnata) seed cake” for biobased composite structures. ACS Sustain Chem Eng 2:2318–2328

    Article  CAS  Google Scholar 

  • Rathore M, Meena RK (2004) Nutritional evaluation of some famine foods of Rajasthan Desert. Indian for 130:304–312

    Google Scholar 

  • Rathore M, Arya R, Meena RK, Kumar H (2005) Shuahk kshetro mei paye jane wale tailiya beejo ke vrikshon ki sambhavit upigoyita. AFRI Darpan (hindi) 2:12–13

    Google Scholar 

  • Reichle D, Houghton J, Kane B, Ekmann J (1999) Carbon sequestration research and development (No. DOE/SC/FE-1). Oak Ridge National Lab., TN (US); National Energy Technology Lab., Pittsburgh, PA (US); National Energy Technology Lab., Morgantown, WV (US).

  • Rejila S, Vijayakumar N (2011) Allelopathic effect of Jatropha curcas on selected intercrop** plants (green chilli and sesame). J Phytol 3(5):01–03

    CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Saetae D, Suntornsuk W (2011) Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake. Int J Mol Sci 12:66–77

    Article  CAS  Google Scholar 

  • Saini MK, Sharma P, Prasad J, Kothari SL, Gour VS (2019) Quality assessment of oil and biodiesel derived from Balanites aegyptiaca collected from different regions of Rajasthan. Biocatal Agric Biotechnol 22(101374):1–6

    Google Scholar 

  • Saini MK, Prasad J, Raju PVS, Kothari SL, Harish SJK, Gour VS (2021) Morphological descriptors and heritability as markers for oil yield in Balanites aegyptiaca (L.) Del.: a potential biodiesel xerophyte. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-021-01270-x

    Article  Google Scholar 

  • Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sust Energ Rev 63:62–92

    Article  CAS  Google Scholar 

  • Salih AA, El Fadl MA, Kaarakka V, Luukkanen O (2005) Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15 N natural abundance method. Plant Soil 275:261–269

    Article  Google Scholar 

  • Samuel AL, Temple VJ (1997) Chemical and nutrition evaluation of the seed kernel of Balanites aegyptiaca. Nig J Biotech 8:57–63

    Google Scholar 

  • Samuel S, Scott PT, Gresshoff PM (2013) Nodulation in the legume biofuel feedstock tree Pongamia pinnata. Agric Res 2:207–214

    Article  CAS  Google Scholar 

  • Sands M J (2001) The desert date and its relatives: a revision of the genus Balanites. Kew Bulletin, pp 1–128

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1:2–11

    Article  Google Scholar 

  • Sharma P, Saini MK, Prasad J, Gour VS (2019) Evaluation of robustness of the biosurfactant derived from Balanites aegyptiaca (L.) Del. J Surfactants Deterg 22:403–408

    Article  CAS  Google Scholar 

  • Sharma RC, Rao BRM, Saxena RK (2004) Salt affected soils in India-current assessment. Adv Sodic Land Reclamation 9–14

  • Silva ED, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74:1130–1137

    Article  Google Scholar 

  • Singh S, Choudhary MR (2012) Production technology of fruit crops in wasteland. Scientific Publishers

    Google Scholar 

  • Singh G, Singh NT, Abrol IP (1994) Agroforestry techniques for the rehabilitation of degraded salt-affected lands in India. Land Degrad Dev 5:223–242

    Article  Google Scholar 

  • Singh MK, Bangarwa KS, Nandal DPS, Ravi K, Ary RK, Tokey OP, Bisla SS (2010) Allelopathic effect of Jatropha curcas leaf litter on winter crops. Environ Ecol 28:1481–1484

    Google Scholar 

  • Surange S, Wollum Ii AG, Kumar N, Nautiyal CS (1997) Characterization of rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894

    Article  CAS  Google Scholar 

  • Tapanes NCO, Aranda DAG, De Mesquita Carneiro JW, Antunes OAC (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295

    Article  Google Scholar 

  • Thiruvengadaravi KV, Nandagopal J, Baskaralingam P, Bala VSS, Sivanesan S (2012) Acid-catalyzed esterification of karanja (Pongamia pinnata) oil with high free fatty acids for biodiesel production. Fuel 98:1–4

    Article  CAS  Google Scholar 

  • Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenerg 31:569–575

    Article  Google Scholar 

  • Varshney A, Anis M (2014) Trees: propagation and conservation: biotechnological approaches for propagation of a multipurpose tree, Balanites aegyptiaca Del. Springer

    Book  Google Scholar 

  • Venkatesh A, Tapasya S, Kumar RV, Gurunathan N (2011) Allelopathic effect of different accessions of Jatropha curcas on field crops. Range Manag Agrofor 32:40–44

    Google Scholar 

  • Wang Z, Calderon MM, Lu Y (2011) Lifecycle assessment of the economic, environmental and energy performance of Jatropha curcas L. biodiesel in China. Biomass Bioenerg 35:2893–2902

    Article  CAS  Google Scholar 

  • Wani SP, Sahrawat KL, Sreedevi TK, Bhattacharyya T, Rao CS (2007) Carbon sequestration in the semi-arid tropics for improving livelihoods. Int J Environ Stud 64:719–727

    Article  Google Scholar 

  • Wani SP, Chander G, Sahrawat KL, Rao CS, Raghvendra G, Susanna P, Pavani M (2012) Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agric Ecosyst Environ 161:112–120

    Article  CAS  Google Scholar 

  • Wani SP, Chander G (2012) Jatropha curcas biodiesel, challenges and opportunities: is it a panacea for energy crisis, ecosystem service and rural livelihoods? In Nicolas C, Mulpuri S, Bir B (eds) Jatropha, challenges for a new energy crop, volume 1: 311 farming, economics and biofuel, Springer, New York, pp 311–331

  • Watson RR, Preedy VR (eds) (2012) Bioactive food as dietary interventions for the aging population: bioactive foods in chronic disease states. Academic Press

    Google Scholar 

  • Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011) Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediat 13:788–804

    Article  Google Scholar 

  • Xu R, Wang R, Liu A (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in develo** seeds of Jatropha (Jatropha curcas L.). Biomass Bioenerg 35:1683–1692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Manoj Kumar, Assistant Professor, Amity School of Languages, Amity University Rajasthan for his valuable inputs toward improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Singh Gour.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflict of interest.

Consent for publication

All authors agree to submit this manuscript to Biologia Futura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, M.K., Shukla, J.K., Kothari, S.L. et al. A comparative appraisal of three important oil yielding plants for their biodiesel potential. BIOLOGIA FUTURA 72, 409–420 (2021). https://doi.org/10.1007/s42977-021-00096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-021-00096-y

Keywords

Navigation