Log in

Characterization of sub-tropical maize (Zea Mays L.) inbred lines for the variation in kernel row numbers (KRNs)

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Genetic dissection of high kernel row numbers (KRNs) trait and cob length has been undertaken by several researchers resulting in identification of loci controlling the traits. Further fine map** of QTLs controlling KRN and cob length and TILLING strategies identified the underlying genes. All these studies are used temperate maize genotypes which are of limited use to researcher in sub-tropical region and the sub-tropical maize production systems. Present investigation explores the availability of genetic regions responsible for KRN in sub-tropical maize germplasm. A total of 280 sub-tropical maize germplasm were analyzed for their KRN variation and selected 45 stable lines were subjected to molecular characterization using genes linked to KRN in maize. Diversity analysis was also performed to understand the possible association of character with the KRN gene in deciding its variation in the given population. It was revealed that four genes showed highest probability of influencing KRN traits in these tropical maize inbred lines. The remaining genes not establishing specific pattern of association with high and low KRN genotypes may need further study on its allelic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519–531 (PMID: 16204211)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower pattern in maize. Development 130:2385–2395

    Article  CAS  PubMed  Google Scholar 

  • Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Aspringdopsis CLAVATA1 leucine-rich repeat receptor like kinase. Development 132:1235–1245 (PMID: 15716347)

    Article  CAS  PubMed  Google Scholar 

  • Bommert P, Je BI, Goldshmidt A, Jackson D (2013a) The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555–558. https://doi.org/10.1038/nature12583. (PMID: 24025774)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bommert P, Nagasawa NS, Jackson D (2013b) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45(3):334–337. https://doi.org/10.1038/ng.2534. (PMID: 23377180)

    Article  CAS  PubMed  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ et al (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7(11):e1002383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderón CI, Yandell BS, Doebley JF (2016) Fine map** of a QTL associated with kernel row number on chromosome 1 of maize. PLoS ONE 11(3):e0150276

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39(4):544–549 (PMID: 17369828)

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Whipple C, Jackson D, Hake S (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137:1243–1250. https://doi.org/10.1242/dev.048348. (PMID: 20223762)

    Article  CAS  PubMed  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA 111(52):18775–18780. https://doi.org/10.1073/pnas.1407401112. (PMID: 25512525)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dass S, Kaul J, Manivannan A, Singode A, Chikkappa GK (2009) Single cross hybrid maize—A viable solution in the changing climate Scenario. Indian J Genet 69(4):331–334

    Google Scholar 

  • Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt RJ (2010) The control of axillary meristem fate in the maize ramosa pathway. Stem Cells Dev 2856:2849–2856

    Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied Logistic Regression. John Wiley and Sons, New York

    Google Scholar 

  • Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genet 48(7):785–791

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhong W, Yang F, Zhang Z (2018) Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant Cell Physiol 59(3):448–457

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11(11):e1005670. https://doi.org/10.1371/journal.pgen.1005670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, ** of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed 28:143–152

    Article  Google Scholar 

  • McSteen P (2006) Branching out: the ramosa pathway and the evolution of grass inflorescence morphology. Plant Cell 18(3):518–522 (PMID: 16513602)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119(5):913–930

    Article  PubMed  Google Scholar 

  • Mukri G, Kumar R, Rajendran A, Kumar B, Hooda KS, Karjagi CG, Singh V, Jat SL, Das AK, Sekhar JC, Singh SB (2018) Strategic selection of white maize inbred lines for tropical adaptation and their utilization in develo** stable, medium to long duration maize hybrids. Maydica 63:1–8

    Google Scholar 

  • Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C et al (2015) FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27:104–120. https://doi.org/10.1105/tpc.114.132506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122(7):1305–1320

    Article  PubMed  Google Scholar 

  • Rakshit S, Ganapathy KN, Gomashe SS, Rathore A, Ghorade RB, Nagesh Kumar MV, Ganesmurthy K, Jain SK, Kamtar MY, Sachan JS, Ambekar SS, Ranwa BR, Kanawade DG, Balusamy M, Kadam D, Sarkar A, Tonapi VA, Patil JV (2012) GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 185:465–479

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8019

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230

    Article  CAS  PubMed  ADS  Google Scholar 

  • Shen X, Zhao R, Liu L, Zhu C, Li M, Du H, Zhang Z (2019) Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L. Theor Appl Genet 132:3439–3448

    Article  CAS  PubMed  Google Scholar 

  • Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19:1296–1311

    Article  CAS  PubMed  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27(4):639–648

    Article  Google Scholar 

  • Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fascinated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15:2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo FHRB, Ramalho MAP, Abreu GB, de Souza JC (2011) Inheritance of kernel row number, a multicategorical threshold trait of maize ears. Genet Mol Res 10(3):2133–2139

    Article  CAS  PubMed  Google Scholar 

  • Upadyayula N, Silva HS, Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112(4):592–606

    Article  CAS  PubMed  Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. II: determination of QTLs for grain-yield and yield components. Theor Appl Genet 89(4):451–458

    Article  CAS  PubMed  Google Scholar 

  • Weil CF, Monde R-A (2007) Induced mutations in maize. Israel J Plant Sci 55(2):183–190

    Article  Google Scholar 

  • Wu X, Skirpan A, McSteen P (2009) Suppressor of sessile spikelets1 functions in the ramosa pathway controlling meristem determinacy in maize. Plant Physiol 149:205–219

    Article  PubMed  PubMed Central  Google Scholar 

  • **ao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10(3):359–374

    Article  CAS  PubMed  Google Scholar 

  • Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y (2019) Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biol 19(1):392. https://doi.org/10.1186/s12870-019-2009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is the output of an external project funded by DST-SERB, New Delhi. Authors are thankful for the financial support by the DST, New Delhi

Funding

This study was funded by DST-SERB, New Delhi, India, with the Grant No. EEQ/2016/000447. This grant was received by author1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati Mukri.

Ethics declarations

Conflict of interest

Authors are declaring that there is no conflict of interest exists.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Hence, it does not require any ethical approval.

Additional information

Communicated by Ahmad Mohammad Alqudah.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukri, G., Gadag, R.N., Bhat, J.S. et al. Characterization of sub-tropical maize (Zea Mays L.) inbred lines for the variation in kernel row numbers (KRNs). CEREAL RESEARCH COMMUNICATIONS 52, 277–285 (2024). https://doi.org/10.1007/s42976-023-00386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-023-00386-2

Keywords

Navigation