Log in

Amendment of organic manure to natural saline soil reduced N2O but enhanced CO2 and CH4 emissions

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Association of agriculture with climate change is widely established. Soil constituents and soil salinity along with the amendments for soil improvement are the key contributors in affecting this association. The present study targets the above issue to find the best management practice in terms of reduction in greenhouse gas (GHG) emissions in Indo-Gangetic plain of Uttar Pradesh. The six sites selected for the study varied in salinity level and followed different management practices of organic and inorganic amendments. Emissions of CO2, CH4 and N2O from soil were measured at different stages of rice and wheat/ mustard/ fallow systems. The findings revealed that soil salinity, crop type and organic/ inorganic amendments differently affected the emission as the fluxes of GHGs varied at different stages of crop growth cycle at different sites. Salinity induced variations generally tended to reduce the CH4 emission while increased the emission of CO2 and N2O, whereas organic matter amendment increased CO2 and CH4 fluxes in comparison to inorganic fertilizer application at the studied sites. The site with rice-mustard crop** exhibited the highest CO2 and N2O fluxes, measuring 3645 and 1.9 mg m− 2 h− 1, respectively. Conversely, the highest CH4 flux of 0.873 mg m− 2 h− 1 was recorded at the saline rice-wheat crop** site. Electrical conductivity, moisture content, soil temperature and total organic carbon acted as major explanatory factors for soil emission of all the GHGs. Further exploration and experimentation are suggested with the use of different amendments to reduce GHG emissions in rice-wheat system, for greater sustainability potential. This ongoing research is vital for optimizing agricultural practices and enhancing their long-term environmental viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

Download references

Acknowledgements

Authors acknowledge the Head, Department of Botany and Coordinator, Centre of Advanced Study (CAS), Institute of Eminence (IOE), and Interdisciplinary School of Life Sciences (ISLS), Banaras Hindu University for the necessary lab and instrument facilities. Bhavna Jaiswal is thankful to University Grants Commission, New Delhi, for financial support in the form of senior research fellowship.

Funding

This work in part is funded by APN (Asia Pacific Network for Global Change Research) project [grant no.: CRRP2016-09MY-Lokupitaiya].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Ethics declarations

Conflict of interest

Authors declared they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, B., Singh, S., Agrawal, S.B. et al. Amendment of organic manure to natural saline soil reduced N2O but enhanced CO2 and CH4 emissions. Trop Ecol (2024). https://doi.org/10.1007/s42965-024-00347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42965-024-00347-8

Keywords

Navigation