Log in

Investigating the Optimum Modifier Dosage and Production Temperature for Plastic-Modified Warm Bituminous Mixes

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Plastic roads are gaining popularity in India due to their superior performance over conventional roads. However, they are associated with higher production temperatures. To make it sustainable, it must be produced at lower temperatures. The current study aims to reduce the production temperatures of plastic-modified bitumen (PMB) mixtures by develo** a protocol to introduce warm mix modifiers into PMB. Two waste plastics, low-density polyethylene (LDPE) and polypropylene (PP) were employed for plastic modification of virgin bitumen. Whereas, polyethylene waxes (PEW) and waste-cooking oil (WCO), were chosen as warm mix modifiers. The Fourier transform infrared (FTIR) spectroscopy test was carried out to study the mechanism of binder modification. The production temperatures were determined using the binder’s viscosity-temperature relationship, and the results were validated with conventional strength and durability tests for bituminous mixes such as Marshall stability, flow, tensile strength, moisture susceptibility, and rutting deformation. According to the findings of this study, incorporating a warm mix modifier content of 0.93%–3.25% (for PEW) and 0.82%–2.83% (for WCO) by weight of bitumen, can result in a 7–24 °C reduction in mixing temperature and a 5–31 °C reduction in compaction temperature, while maintaining the mixture properties within specified limits for modified bituminous mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors declare that, in order to protect the privacy, the data supporting the study's findings are not publicly available, but can be obtained from the corresponding author upon reasonable request.

References

  1. P.S. Kandhal, Bituminous road construction in India, PHI Learning Pvt. Ltd., 2016.

  2. Estevez, M. (2009). Use of coupling agents to stabilize asphalt-rubber-gravel composite to improve its mechanical properties. Journal of Cleaner Production, 17, 1359–1362. https://doi.org/10.1016/j.jclepro.2009.04.002

    Article  Google Scholar 

  3. Zhang, F., & Yu, J. (2010). The research for high-performance SBR compound modified asphalt. Construction and Building Materials, 24, 410–418. https://doi.org/10.1016/j.conbuildmat.2009.10.003

    Article  Google Scholar 

  4. Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete—A review. Construction and Building Materials, 24, 871–877. https://doi.org/10.1016/j.conbuildmat.2009.11.009

    Article  Google Scholar 

  5. Ai, A. H., Yi-Qiu, T., & Hameed, A. T. (2011). Starch as a modifier for asphalt paving materials. Construction and Building Materials, 25, 14–20. https://doi.org/10.1016/j.conbuildmat.2010.06.062

    Article  Google Scholar 

  6. R. Vasudevan, A.R.C. Sekar, B. Sundarakannan, R. Velkennedy, A. Ramalinga Chandra Sekar, B. Sundarakannan, R. Velkennedy, A technique to dispose waste plastics in an ecofriendly way——application in construction of flexible pavements, Constr. Build. Mater. 28 (2012) 311–320. https://doi.org/10.1016/j.conbuildmat.2011.08.031.

  7. Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. https://doi.org/10.1016/j.conbuildmat.2012.01.009

    Article  Google Scholar 

  8. González, O., Peña, J. J., Muñoz, M. E., Santamaría, A., Pérez-Lepe, A., Martínez-Boza, F., & Gallegos, C. (2002). Rheological techniques as a tool to analyze polymer-bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends. Energy and Fuels., 16, 1256–1263. https://doi.org/10.1021/ef020049l

    Article  Google Scholar 

  9. Pérez-Lepe, A., Martínez-Boza, F. J., Gallegos, C., González, O., Muñoz, M. E., & Santamaría, A. (2003). Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 82, 1339–1348. https://doi.org/10.1016/S0016-2361(03)00065-6

    Article  Google Scholar 

  10. Abdel-Goad, M. A. H. (2006). Waste polyvinyl chloride-modified bitumen. Journal of Applied Polymer Science, 101, 1501–1505. https://doi.org/10.1002/app.22623

    Article  Google Scholar 

  11. M.B. Genet, Z.B. Sendekie, A.L. Jembere, Investigation and optimization of waste LDPE plastic as a modifier of asphalt mix for highway asphalt: Case of Ethiopian roads, Case Stud. Chem. Environ. Eng. 4 (2021) 100150. https://doi.org/10.1016/j.cscee.2021.100150.

  12. M.R. Kakar, P. Mikhailenko, Z. Piao, M. Bueno, L. Poulikakos, Analysis of waste polyethylene (PE) and its by-products in asphalt binder, Constr. Build. Mater. 280 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122492.

  13. R.M. Raouf, K.M. Eweed, N.M. Rahma, Recycled Polypropylene to improve Asphalt physical properties, Int. J. Civ. Eng. Technol. 9 (2018) 1260–1266. http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=12.

  14. M.S. Goud, A. Ramesh, V.V. Ramayya, M. Kumar (2018) Effect of Polypropylene Granules in Asphalt Mix Prepared with Varying Packing Characteristics, Highw. Res. Journal, Indian Roads Congr. 9 13–20.

  15. Singh, B., Kumar, L., Gupta, M., & Chauhan, G. S. (2013). Polymer-Modified Bitumen of Recycled LDPE and Maleated Bitumen. Journal of Applied Polymer Science, 127, 67–78. https://doi.org/10.1002/app.36810

    Article  Google Scholar 

  16. IRC: SP: 53, Guidelines on use of Modified Bitumen in Road Construction, Indian Roads Congr. (2010) 36.

  17. Almeida-Costa, A., & Benta, A. (2016). Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. Journal of Cleaner Production, 112, 2308–2317. https://doi.org/10.1016/j.jclepro.2015.10.077

    Article  Google Scholar 

  18. G. Prakash, S.K. Suman, Comparative Assessment of CMSDBC and HMSDBC Competency, in: Lect. Notes Civ. Eng. Road Airf. Pavement Technol.—Proc. ICPT 2021, Springer International Publishing, 2022. pp. 629–643. https://doi.org/10.1007/978-3-030-87379-0.

  19. IRC: SP: 101, Interim Guidelines for Warm Mix Asphalt, New Delhi, 2014.

  20. M. Sukhija, N. Saboo, A comprehensive review of warm mix asphalt mixtures-laboratory to field, Constr. Build. Mater. 274 (2021) 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781.

  21. B. Singh, N. Saboo, P. Kumar, Effect of Polymer and Warm mix Modification on Asphalt Mixture Properties, IOP Conf. Ser. Mater. Sci. Eng. 1075 (2021) 012015. https://doi.org/10.1088/1757-899x/1075/1/012015.

  22. Singh, B., & Kumar, P. (2021). Investigating the performance of polymer and warm mix modified asphalt binders and mixtures. International Journal of Pavement Engineering, 10298436, 1–15. https://doi.org/10.1080/10298436.2021.1915491

    Article  Google Scholar 

  23. Akisetty, C. K., Lee, S.-J., & Amirkhanian, S. N. (2009). High temperature properties of rubberized binders containing warm asphalt additives. Construction and Building Materials, 23, 565–573. https://doi.org/10.1016/j.conbuildmat.2007.10.010

    Article  Google Scholar 

  24. Akisetty, C. K., Lee, S. J., & Amirkhanian, S. N. (2010). Laboratory investigation of the influence of warm asphalt additives on long-term performance properties of CRM binders. International Journal of Pavement Engineering, 11, 153–160. https://doi.org/10.1080/10298430903197225

    Article  Google Scholar 

  25. Leng, Z., Yu, H., Zhang, Z., & Tan, Z. (2017). Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization. Construction and Building Materials, 144, 291–299. https://doi.org/10.1016/j.conbuildmat.2017.03.208

    Article  Google Scholar 

  26. H.I. Ozturk, F. Kamran, Laboratory evaluation of dry process crumb rubber modified mixtures containing Warm Mix Asphalt Additives, Constr. Build. Mater. 229 (2019) 116940. https://doi.org/10.1016/j.conbuildmat.2019.116940.

  27. Edwards, Y. (2009). Influence of waxes on bitumen and asphalt concrete mixture performance. Road Mater. Pavement Des., 10, 313–335. https://doi.org/10.1080/14680629.2009.9690197

    Article  Google Scholar 

  28. Tasdemir, Y. (2009). High temperature properties of wax modified binders and asphalt mixtures. Construction and Building Materials, 23, 3220–3224. https://doi.org/10.1016/j.conbuildmat.2009.06.010

    Article  Google Scholar 

  29. Jamaloei, M. H., Esfahani, M. A., & Torkaman, M. F. (2019). Rheological and mechanical properties of bitumen modified with sasobit, polyethylene, paraffin, and their mixture. Journal of Materials in Civil Engineering, 31, 04019119. https://doi.org/10.1061/(asce)mt.1943-5533.0002664

    Article  Google Scholar 

  30. Nasrekani, A. A., Nakhaei, M., Naderi, K., Nasrekani, A. A., & Timm, D. H. (2018). Chemical, rheological, and moisture resistance properties of warm mix asphalt modified with polyethylene-wax and ethylene-bis-stearamide additives. Transp. Res. Board., 152, 1–17.

    Google Scholar 

  31. Omari, I., Aggarwal, V., & Hesp, S. (2016). Investigation of two Warm Mix Asphalt additives. Int. J. Pavement Res. Technol., 9, 83–88. https://doi.org/10.1016/j.ijprt.2016.02.001

    Article  Google Scholar 

  32. C. Li, X. Han, J. Gong, W. Su, Z. **, J. Zhang, Q. Wang, H. **e, Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder, Constr. Build. Mater. 251 (2020) 118994. https://doi.org/10.1016/j.conbuildmat.2020.118994.

  33. Al-Omari, A. A., Khedaywi, T. S., & Khasawneh, M. A. (2018). Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications. Int. J. Pavement Res. Technol., 11, 68–76. https://doi.org/10.1016/j.ijprt.2017.09.004

    Article  Google Scholar 

  34. Garcia, A., Austin, C. J., & Jelfs, J. (2016). Mechanical properties of asphalt mixture containing sunflower oil capsules. Journal of Cleaner Production, 118, 124–132. https://doi.org/10.1016/j.jclepro.2016.01.072

    Article  Google Scholar 

  35. A.C.X. Portugal, L.C. de F.L. Lucena, A.E. de F.L. Lucena, D.B. Costa, K.A. de Lima, Rheological properties of asphalt binders prepared with maize oil, Constr. Build. Mater. 152 (2017) 1015–1026. https://doi.org/10.1016/j.conbuildmat.2017.07.077.

  36. A.C.X. Portugal, L.C. de F.L. Lucena, A.E. de F.L. Lucena, D. Beserra da Costa, Rheological performance of soybean in asphalt binder modification, Road Mater. Pavement Des. 19 (2017) 768–782. https://doi.org/10.1080/14680629.2016.1273845.

  37. Wen, H., Bhusal, S., & Wen, B. (2013). Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt. Journal of Materials in Civil Engineering, 25, 1432–1437. https://doi.org/10.1061/(asce)mt.1943-5533.0000713

    Article  Google Scholar 

  38. Rubio, M. C., Martínez, G., Baena, L., & Moreno, F. (2012). Warm Mix Asphalt: An overview. Journal of Cleaner Production, 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053

    Article  Google Scholar 

  39. IS: 73, Paving bitumen—specification, Bur. Indian Stand. New Delhi. (2013) 1–4.

  40. IS:1206 (Part II), Indian standard methods for testing tar and bituminous materials: determination of viscosity: Part II Absolute Viscosity, Bur. Indian Stand. (1978).

  41. IS:1206 (Part III), Indian standard methods for testing tar and bituminous materials: determination of viscosity: Part III Kinematic Viscosity, Bur. Indian Stand. (1978).

  42. IS:1202, Indian standard methods for testing tar and bituminous materials: Determination of specific gravity, Bur. Indian Stand. (1978).

  43. IS:1208, Indian standard methods for testing tar and bituminous materials: determination of ductility, Bur. Indian Stand. (1978).

  44. IS:1203, Indian standard methods for testing tar and bituminous materials: Determination of penetration, Bur. Indian Stand. (1978).

  45. IS:1205, Indian standard methods for testing tar and bituminous materials: Determination of softening point, Bur. Indian Stand. (1978).

  46. IS 1448–69, Methods of test for petroleum and its products, Part 69: Flash and fire point by cleveland (open) cup, Bur. Indian Stand. (1969).

  47. IRC: 111, Specifications for Dense Graded Bituminous Mixes, in: Indian Roads Congr., Indian Roads Congress, New Delhi, 2009: p. 32

  48. IS 2386—4, Methods of test for Aggregates for Concrete, part 4 : Mechanical properties, New Delhi, 2002.

  49. IS 2386—1, Methods of Test for Aggregates for Concrete, Part I: Particle Size and Shape, Bureau of Indian Standards, New Delhi, New Delhi, 2002.

  50. IS 2386—3, Methods of Test for aggregate for concrete, Part 3: Specific gravity, density, voids, absorption and bulking, 2002.

  51. IS 2386—5, Methods of Test for Aggregates for Concrete, Part V: Soundness, 2002.

  52. IS:6241, Method of Test for Determination of Strip** Value of Road Aggregate, Bur. Indian Stand. (1971).

  53. G. Prakash, S.K. Suman, R. Kumar, Evaluating the test protocols to determine the Mixing and Compaction Temperatures of Modified Bitumen, Innov. Infrastruct. Solut. 7 (2022). https://doi.org/10.1007/s41062-022-00863-3.

  54. ASTM D6988, Standard Guide for Determination of Thickness of Plastic Film Test Specimens., Annu. B. ASTM Stand. (2013). https://doi.org/10.1520/D6988-13.

  55. ASTM D792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, Annu. B. ASTM Stand. (2020). https://doi.org/10.1520/D0792-20.

  56. ASTM D3418, Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry, Annu. B. ASTM Stand. (2015). https://doi.org/10.1520/D3418-15.

  57. S. D’angelo, G. Ferrotti, F. Cardone, F. Canestrari, Asphalt Binder Modification with Plastomeric Compounds Containing Recycled Plastics and Graphene, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15020516.

  58. Colbert, B. W., & You, Z. (2012). Properties of modified asphalt binders blended with electronic waste powders. Journal of Materials in Civil Engineering, 24, 1261–1267. https://doi.org/10.1061/(asce)mt.1943-5533.0000504

    Article  Google Scholar 

  59. Lee, S.-J., Amirkhanian, S. N., & Kwon, S.-Z. (2008). The effects of compaction temperature on CRM mixtures made with the SGC and the Marshall compactor. Construction and Building Materials, 22, 1122–1128. https://doi.org/10.1016/j.conbuildmat.2007.03.003

    Article  Google Scholar 

  60. T.H. Fadhil, R.K. Ibrahim, H.S. Fathullah, The Influence of Curing Methods on Marshall Stability and Flow, IOP Conf. Ser. Mater. Sci. Eng. 671 (2020) 012132. https://doi.org/10.1088/1757-899X/671/1/012132.

  61. ASTM D6926–20, Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus, ASTM Int. (2020).

  62. ASTM D2493, Standard Practice for Viscosity-Temperature Chart for Asphalt Binders, (2016). https://doi.org/10.1520/D2493-16.

  63. ASTM D 6927–15, Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures, ASTM Int. Conshohocken, PA. (2015). https://doi.org/10.1520/D6927-15.

  64. ASTM D6931, Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures, in: Am. Soc. Test. Mater., 2018. https://doi.org/10.1520/D6931-18.

  65. EN 12697–33, Bituminous mixtures—Test methods for hot mix asphalt—Part 33: Specimen prepared by roller compactor, Eur. Stand. (2003) 1–9.

  66. EN 12697–22, Bituminous mixtures—Test methods for hot mix asphalt—Part 22 : Wheel tracking, Eur. Stand. (2003) 1–29.

  67. S. Heydari, A. Hajimohammadi, N.H.S. Javadi, N. Khalili, The use of plastic waste in asphalt: A critical review on asphalt mix design and Marshall properties, Constr. Build. Mater. 309 (2021) 125185. https://doi.org/10.1016/j.conbuildmat.2021.125185.

  68. Xue, Q., Liu, L., & Chen, Y.-J. (2013). Study on the action effect of pavement straw composite fiber material in asphalt mixture. Construction and Building Materials, 43, 293–299. https://doi.org/10.1016/j.conbuildmat.2013.02.031

    Article  Google Scholar 

  69. Kajugaran, S., & Weragoda, V. S. C. (2016). Development of polymer modified asphalt using filler, 2nd Int. Moratuwa Eng. Res. Conf. MERCon, 2016, 355–360. https://doi.org/10.1109/MERCon.2016.7480167

    Article  Google Scholar 

  70. Kumar, T. A., Sandeep, I. J. S., Nivitha, M. R., Chowdary, V., & Krishnan, J. M. (2019). Quantification of aging compounds in evotherm-modified warm-mix asphalt binder using fourier transform infrared spectroscopy. Arabian Journal for Science and Engineering, 44, 8429–8437. https://doi.org/10.1007/s13369-019-03965-w

    Article  Google Scholar 

  71. Yu, X., Wang, Y., & Wei, T. (2013). The viscosity-reducing mechanism of organic wax additive on CRMA. J. Wuhan Univ. Technol. Mater. Sci. Ed., 28, 726–732. https://doi.org/10.1007/s11595-013-0760-z

    Article  Google Scholar 

  72. Hou, X., Lv, S., Chen, Z., & **ao, F. (2018). Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Meas. J. Int. Meas. Confed., 121, 304–316. https://doi.org/10.1016/j.measurement.2018.03.001

    Article  Google Scholar 

  73. G. Prakash, S.K. Suman, An intensive overview of Warm Mix Asphalt (WMA) technologies towards Sustainable Pavement Construction, Innov. Infrastruct. Solut. 7 (2022). https://doi.org/10.1007/s41062-021-00712-9.

  74. ASTM D4402–15, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, ASTM Int. (2015). https://doi.org/10.1520/D4402_D4402M-15R22.

  75. Zhang, Q., Goh, S. W., & You, Z. (2011). Study on dynamic modulus of waste plastic modified asphalt mixture using waste plastic bag chips. Advances in Materials Research, 261–263, 824–828. https://doi.org/10.4028/www.scientific.net/AMR.261-263.824

    Article  Google Scholar 

  76. Nouali, M., Derriche, Z., Ghorbel, E., & Chuanqiang, L. (2018). Plastic bag waste modified bitumen a possible solution to the Algerian road pavements. Road Mater. Pavement Des., 21, 1713–1725. https://doi.org/10.1080/14680629.2018.1560355

    Article  Google Scholar 

  77. Dalhat, M. A., & Wahhab, H.I.A.-A. (2017). Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering, 18, 349–357. https://doi.org/10.1080/10298436.2015.1088150

    Article  Google Scholar 

  78. Al-Hadidy, A. I., & Yi-qiu, T. (2009). Effect of polyethylene on life of flexible pavements. Construction and Building Materials, 23, 1456–1464.

    Article  Google Scholar 

  79. Khurshid, M. B., Qureshi, N. A., Hussain, A., & Iqbal, M. J. (2019). Enhancement of hot mix asphalt (HMA) properties using waste polymers. Arabian Journal for Science and Engineering, 44, 8239–8248. https://doi.org/10.1007/s13369-019-03748-3

    Article  Google Scholar 

  80. M.S. Ahmad, Low Density Polyethylene Modified Dense Graded Bituminous Macadam, Int. J. Eng. Trends Technol. 16 (2014) 366–372. https://doi.org/10.14445/22315381/ijett-v16p273.

  81. Tiwari, A. V., & Rao, Y. R. M. (2018). Study of plastic waste mixed bituminous concrete using dry process for road construction. Sel. Sci. Pap.—J. Civ. Eng., 13, 105–112. https://doi.org/10.1515/sspjce-2018-0024

    Article  Google Scholar 

  82. Suaryana, N., Nirwan, E., & Ronny, Y. (2018). Plastic bag waste on hotmixture asphalt as modifier. Key Engineering Materials, 789, 20–25. https://doi.org/10.4028/www.scientific.net/KEM.789.20

    Article  Google Scholar 

  83. G.C. Hurley, B.D. Prowell, G. Reinke, P. Joskowicz, R. Davis, J. Scherocman, S. Brown, X. Hongbin, D. Bonte, Evaluation of potential processes for use in warm mix asphalt, in: Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., 2006.

  84. K.A. Ghuzlan, M.O. Al Assi, Sasobit-Modified Asphalt Binder Rheology, J. Mater. Civ. Eng. 29 (2017) 04017142 1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001996.

  85. G.C. Hurley, B.D. Prowell, Evaluation of Potential Processes for Use in Warm Mix Asphalt, Natl. Cent. Asph. Technol. (NCAT), Rep. No. 06–04. Auburn, Alabama. (2006).

  86. G. Prakash, S.K. Suman, Rutting characteristics evaluation and prediction model development for warm mix asphalt, Int. J. Pavement Eng. 24 (2023). https://doi.org/10.1080/10298436.2023.2165656.

  87. Bairgi, B. K., Tarefder, R. A., & Ahmed, M. U. (2018). Long-term rutting and strip** characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Construction and Building Materials, 170, 790–800. https://doi.org/10.1016/j.conbuildmat.2018.03.055

    Article  Google Scholar 

  88. T. Bennert, A. Maher, R. Sauber, Influence of Production Temperature and Aggregate Moisture Content on the Initial Performance of Warm-Mix Asphalt, Transp. Res. Rec. J. Transp. Res. Board. (2011) 97–107. https://doi.org/10.3141/2208-13.

Download references

Acknowledgements

The research program reported in this paper was carried out at the Transportation Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Patna, Bihar, India.

Funding

There has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Gautam Prakash.

Ethics declarations

The authors declare that this manuscript is original, has not been published before and is not currently been considered for publication elsewhere.

Conflict of interest

The authors know of no conflict of interest associated with this publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, G., Suman, S.K. Investigating the Optimum Modifier Dosage and Production Temperature for Plastic-Modified Warm Bituminous Mixes. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-023-00326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00326-7

Keywords

Navigation