Log in

Effects of magnetic field and hydrostatic pressure on the antiferromagnetic–ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

In this study, the thermal expansion of Hf1-xTaxFe2 (x = 0.10, 0.13, 0.15) compounds by adjusting the Ta concentration was successfully regulated. The magnetocaloric properties, hydrostatic pressure affecting the antiferromagnetic–ferromagnetic transition, and magnetostriction in the low magnetic field were studied. The ΔSM values of 3.3 J·(kg·K)−1 and 3.6 J·(kg·K)−1 were obtained under magnetic fields of 10 kOe and 15 kOe in the Hf0.85Ta0.15Fe2, respectively. In the antiferromagnetic–ferromagnetic state transformation process under hydrostatic pressure up to 0.8 GPa, the state temperature does not decrease in a strictly linear manner. Outstanding magnetostrictive properties of 0.12% were obtained at a magnetic field of 10 kOe. This kind of alloy is supposed to be controlled under hydrostatic pressure to obtain good magnetic refrigeration performance and magnetostrictive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pecharsky VK, Gschneidner JKA. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78(23):4494.

    CAS  Google Scholar 

  2. Tishin AM, Spichkin YI. In: Coey JMD, Tilley DR, Vij DR, editors. The magnetocaloric effect and its applications. Bristol: Institute of Physics Publishing; 2003.

    Google Scholar 

  3. Kumar R. Magnetocaloric effect in cryocooler regenerator materials and its applications. Mater Today. 2017;4(4, Part E):5544.

    Google Scholar 

  4. Franco V, Blázquez JS, Ipus JJ, Law JY, Moreno-Ramírez LM, Conde A. Magnetocaloric effect: From materials research to refrigeration devices. Prog Met Phys. 2018;93:112.

    Google Scholar 

  5. Cugini F, Righi L, van Eijck L, Brück E, Solzi M. Cold working consequence on the magnetocaloric effect of Ni50Mn34In16 Heusler alloy. J Alloys Compd. 2018;749:211.

    CAS  Google Scholar 

  6. Lyubina J. Magnetocaloric materials for energy efficient cooling. J Phys D: Appl Phys. 2017;50(5): 053002.

    Google Scholar 

  7. Bruck E, Yibole H, Zhang L. A universal metric for ferroic energy materials. Philos Trans R Soc A. 2016;374:20150303.

    Google Scholar 

  8. Tegus O, Brück E, Buschow KHJ, De Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 2002;415(6868):150.

    CAS  Google Scholar 

  9. Babita I, Patil SI, Ram S. First order structural transformation and inverse magnetocaloric effect in melt-spun Ni–Mn–Sn ribbons. J Phys D. 2010;43(20): 205002.

    Google Scholar 

  10. Khovaylo VV, Skokov KP, Gutfleisch O, Miki H, Takagi T, Kanomata T, et al. Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys. Phys Rev B. 2010;81(21): 214406.

    Google Scholar 

  11. Sharma VK, Chattopadhyay MK, Sharath Chandra LS, Roy SB. Elevating the temperature regime of the large magnetocaloric effect in a Ni–Mn–In alloy towards room temperature. J Phys D. 2011;44(14): 145002.

    Google Scholar 

  12. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11:620.

    CAS  Google Scholar 

  13. Raghavendra Reddy V, Rawat R, Gupta A, Bag P, Siruguri V, Chaddah P. Low temperature high magnetic field 57Fe Mössbauer study of kinetic arrest in Ta doped HfFe2. J Phys. 2013;25(31): 316005.

    Google Scholar 

  14. Chen F, Huang Q, Jiang Z, Xuan H, Zhang M, Xu X, Zhao J. Large magnetoresistance in highly textured Mn44.7Ni43.5Sn11.8 melt spun ribbons. Smart Mater Struct. 2016;25(5):055031.

    Google Scholar 

  15. Pandey S, Us SA, Quetz A, Chen JH, Aryal A, Dubenko I, Philip WA, Shane S, Naushad A. The effects of hydrostatic pressure on the martensitic transition, magnetic, and magnetocaloric effects of Ni45Mn43CoSn11. MRS Commun. 2017;7(4):885.

    CAS  Google Scholar 

  16. Qian M, Zhang X, Jia Z, Wan X, Geng L. Enhanced magnetic refrigeration capacity in Ni-Mn-Ga micro-particles. Mater Des. 2018;148:115.

    CAS  Google Scholar 

  17. Zhang X, Zhang H, Qian M, Geng L. Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations. Sci Rep. 2018;8(1):8235.

    Google Scholar 

  18. Dong Y-G, Chen S, Jia N-N, Zhang Q-H, Wang L, Xue Y-F, ** K. Microstructures and mechanical properties of Ta–Nb–Zr–Ti–Al refractory high entropy alloys with varying Ta/Ti ratios. Tungsten. 2021;3(4):406.

    Google Scholar 

  19. Ranjbar Bahadori S, Hart R, Hao Y-W. Synthesis of cobalt, palladium, and rhenium nanoparticles. Tungsten. 2020;2(3):261.

    Google Scholar 

  20. Nishihara Y, Yamaguchi Y. Magnetic phase transitions in itinerant electron magnets Hf 1–x Ta x Fe2. J Phys Soc Jpn. 1983;52(10):3630.

    CAS  Google Scholar 

  21. Morellon L, Algarabel PA, Ibarra MR, Arnold Z, Kamarad J. Magnetoelastic and pressure effects at the antiferro-ferromagnetic transition in Hf1-xTaxFe2-y alloys. J Appl Phys. 1996;80(12):6911.

    CAS  Google Scholar 

  22. Cen DY, Wang B, Chu RX, Gong YY, Xu GZ, Chen FH, et al. Design of (Hf, Ta)Fe-2/Fe composite with zero thermal expansion covering room temperature. Scr Mater. 2020;186:331.

    CAS  Google Scholar 

  23. Diop LVB, Amara M, Isnard O. Large magnetovolume effects due to transition from the ferromagnetic to antiferromagnetic state in Hf0.825Ta0.175Fe2 intermetallic compound. J Phys Cond Mat. 2013;25(41):416007.

    CAS  Google Scholar 

  24. Rechenberg HR, Morellon L, Algarabel PA, Ibarra MR. Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures. Phys Rev B. 2005;71(10): 104412.

    Google Scholar 

  25. Dong JD, Zhang MX, Liu J, Zhang PN, Yan A. Magnetic properties and magnetocaloric effect of Hf-Ta-Fe-(CO) alloys. Phys B. 2015;476:171.

    CAS  Google Scholar 

  26. Li LF, Tong P, Jiang WB, Lin JC, Zhu F, Shu MF, Fang T, Zhao GC, Jiang ZZ, Wang W, Pan CB, Zhu XB, Song WH, Sun YP. Near-zero thermal expansion and high thermal conductivity from ambient to cryogenic temperatures in Hf0.87Ta0.13Fe2Cu. Materialia. 2020;9:1637.

    Google Scholar 

  27. Huang YJ, Li SZ, Han ZD, Wang WX, Jiang ZY, Huang SL, et al. Mossbauer study of the spin reorientation in pseudobinary alloy Hf0.82Ta0.18Fe2. Alloys Compd. 2007;427(1–2):37.

    CAS  Google Scholar 

  28. Diop LVB, Isnard O, Suard E, Benea D. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound. Solid State Commun. 2016;229:16.

    CAS  Google Scholar 

  29. Diop LVB, Isnard O, Amara M, Gay F, Itié JP. Giant negative thermal expansion across the first-order magnetoelastic transition in Hf0.86Ta0.14Fe2. J Alloys Compd. 2020;845:156310.

    CAS  Google Scholar 

  30. Diop LVB, Isnard O. Magnetically driven giant negative thermal expansion covering room temperature in Hf0.875Ta0.125Fe2. Solid State Commun. 2020;320:114021.

    CAS  Google Scholar 

  31. Li S, Yang J, Zhao N, Wang Q, Fan X, Yin X, Cui W. Phase-transition-induced magneto-elastic coupling and negative thermal expansion in (Hf, Ta) Fe1.98 Laves phase. J Magn Magn Mater. 2021;517:167236.

    CAS  Google Scholar 

  32. Song Z, Li Z, Yang B, Yan H, Esling C, Zhao X, Zuo L. large low-field reversible magnetocaloric effect in itinerant-electron Hf1-xTaxFe2 alloys. Materials. 2021;14(18):5233.

    CAS  Google Scholar 

  33. Shafiei A. New approach to model the yield strength of body-centered cubic solid solution refractory high-entropy alloys. Tungsten. 2020;2(3):307.

    Google Scholar 

  34. Huang Y-J, Han Z-D, Jiang Z-Y, Li S-Z, Hsia Y-F. Microscopic magnetic properties of itinerant-electron system Hf0.8Ta0.2(Fe1−xcox)2 (x=0–0.09): a Mössbauer study. Phy B. 2007;388(1–2):354.

    CAS  Google Scholar 

  35. Wollants P, Roos JR, Delaey L. Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog Mater Sci. 1993;37(3):227.

    CAS  Google Scholar 

  36. Chen F, Sánchez Llamazares JL, Sánchez-Valdés CF, Müllner P, Shi YG, Tong YX, et al. High temperature martensitic transformation and giant magnetocaloric effect in Ni40Co10Mn41Sn9 melt-spun ribbons. J Alloys Compd. 2018;744:493.

    CAS  Google Scholar 

  37. Li L, Tong P, Tong W, Jiang W, Ding Y, Lin H. Low thermal expansion modulated by off-stoichiometric effect in nonstoichiometric laves phase Hf0.87Ta0.13Fe2+x compounds. Inorg Chem. 2019;58(24):16818.

    CAS  Google Scholar 

  38. Hu FX, Shen FR, Hao JZ, Liu Y, Wang J, Sun JR, Shen BG. Negative thermal expansion in the materials with giant magnetocaloric effect. Front Chem. 2018;6:438.

    CAS  Google Scholar 

  39. Li S, Wu H, Zhao N, Chen J, Zhang Y, Cui W. Interstitial Effects on the Magnetic Phase Transition and Magnetocaloric Effects in (Hf, Ta)Fe2 Kagome Phase. J Supercond Novel Magn. 2020;33(10):3211.

    CAS  Google Scholar 

  40. Alvaranega TST, Alho BP, Nobrega EP, Ribeiro PO, Caldas A, de Sousa VSR, et al. Theoretical investigation on the barocaloric and magnetocaloric properties in the Gd5Si2Ge2 compound. J Appl Phys. 2014;116(24): 243908.

    Google Scholar 

  41. Moruzzi VL. High-spin and low-spin states in Invar and related alloys. Phys Rev B. 1990;41(10):6939.

    CAS  Google Scholar 

  42. Diop LVB, Kastil J, Isnard O, Arnold Z, Kamarad J. Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf, Ta)Fe2 compounds. J Appl Phys. 2014;116(16): 163907.

    Google Scholar 

  43. Kido G, Tadakuma Y, Nakagawa Y, Nishihara Y, Yamaguchi Y. Magnetostriction and magnetization processes in Hf1−xTaxFe2 under pulsed high magnetic fields. J Magn Magn Mater. 1986;54–57:885.

    Google Scholar 

Download references

Acknowledgements

This work was financially by the School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Australia; The China Scholarship Council (No. 201808140031); The Emerging Industry Leadership Talent Program of Shanxi Province (No. 2019042); Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Hua Chen or Zheng-Yi Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FH., **e, HB., Huo, MS. et al. Effects of magnetic field and hydrostatic pressure on the antiferromagnetic–ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys. Tungsten 5, 503–511 (2023). https://doi.org/10.1007/s42864-022-00156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00156-3

Keywords

Navigation