Log in

Adsorptive removal of cesium using surface-modified petroleum residue pitch with NaClO

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Industrial activities that utilize nuclear technology can cause radioactive contamination in the ecosystems. In particular, cesium (Cs) has problems, such as neurological diseases, when it is exposed and accumulated in the bodies of animals, plants, and humans for a long time. Therefore, the development of simple and economical adsorbents for Cs removal is required. In this study, the surface of petroleum residue pitch was modified using NaClO and it was used to remove Cs from an aqueous solution. Batch experiments and characterization of the modified adsorbent were performed to determine the adsorption mechanism between the adsorbent and Cs. From these results, chemical and monolayer adsorption were found to occur at the carboxyl groups on the adsorbent surface, along with a cation exchange reaction occurred due to the sodium ions on the surface. Through this modification process, the total acidity, including phenolic, lactonic and carboxylic functional groups, was improved to 1.563 mmol/g and the maximum adsorption capacity of Cs for the modified adsorbent was 65.8 mg/g.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from corresponding author upon reasonable request.

References

  1. Farjana SH, Huda N, Mahmud MP, Saidur R (2019) A review on the impact of mining and mineral processing industries through life cycle assessment. J Clean Prod 231:1200–1217. https://doi.org/10.1016/j.jclepro.2019.05.264

    Article  Google Scholar 

  2. Onda Y, Taniguchi K, Yoshimura K, Kato H, Takahashi J, Wakiyama Y, Coppin F, Smith H (2020) Radionuclides from the Fukushima Daiichi nuclear power plant in terrestrial systems. Nat Rev Earth Environ 1:644–660. https://doi.org/10.1038/s43017-021-00198-0

    Article  CAS  Google Scholar 

  3. Matsunami H, Murakami T, Fujiwara H, Shinano T (2016) Evaluation of the cause of unexplained radiocaesium contamination of brown rice in Fukushima in 2013 using autoradiography and gamma-ray spectrometry. Sci Rep 6:20386. https://doi.org/10.1038/srep20386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sundbom M, Meili M, Andersson E, Östlund M, Broberg A (2003) Long-term dynamics of Chernobyl 137Cs in freshwater fish: quantifying the effect of body size and trophic level. J Appl Ecol 40:228–240. https://doi.org/10.1046/j.1365-2664.2003.00795.x

    Article  CAS  Google Scholar 

  5. Burger A, Lichtscheidl I (2018) Stable and radioactive cesium: a review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci Total Environ 618:1459–1485. https://doi.org/10.1016/j.scitotenv.2017.09.298

    Article  CAS  PubMed  Google Scholar 

  6. Shin KH, Shin SH, Kang KJ, Kim HR (2022) Radiation safety evaluation of workers on aerosol generated during radioactive waste processing in hot cell facility. J Korean Phys Soc 81:848–857. https://doi.org/10.1007/s40042-022-00632-6

    Article  CAS  Google Scholar 

  7. Melnikov P, Zanoni LZ (2010) Clinical effects of cesium intake. Biol Trace Elem Res 135:1–9. https://doi.org/10.1007/s12011-009-8486-7

    Article  CAS  PubMed  Google Scholar 

  8. Khan A, Bari A, Torres M, Haines D, Hoffman T, Semkow T (2020) Destructive and nondestructive determination of 226Ra and 228Ra in drinking water by gamma spectrometry. J Environ Prot 11:257–268. https://doi.org/10.4236/jep.2020.114015

    Article  CAS  Google Scholar 

  9. Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506. https://doi.org/10.1080/01496399308017493

    Article  CAS  Google Scholar 

  10. Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol 18:231–269. https://doi.org/10.1007/s11157-019-09499-9

    Article  CAS  Google Scholar 

  11. Szöke S, Pátzay G, Weiser L (2003) Development of selective cobalt and cesium removal from the evaporator concentrates of the PWR Paks. Radiochim Acta 91:229–232. https://doi.org/10.1524/ract.91.4.229.19973

    Article  Google Scholar 

  12. Cho E, Lee JJ, Lee B-S, Lee K-W, Yeom B, Lee TS (2020) Cesium ion-exchange resin using sodium dodecylbenzenesulfonate for binding to Prussian blue. Chemosphere 244:125589. https://doi.org/10.1016/j.chemosphere.2019.125589

    Article  CAS  PubMed  Google Scholar 

  13. Rogers H, Bowers J, Gates-Anderson D (2012) An isotope dilution–precipitation process for removing radioactive cesium from wastewater. J Hazard Mater 243:124–129. https://doi.org/10.1016/j.jhazmat.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang S, Wang J (2019) Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. J Mol Liq 294:111682. https://doi.org/10.1016/j.molliq.2019.111682

    Article  CAS  Google Scholar 

  15. Tang X, Wang S, Zhang Z, Li Z, Wang L, Yuan L, Wang B, Sun J, Zheng L, Wang H (2022) Graphene oxide/chitosan/potassium copper hexacyanoferrate (II) composite aerogel for efficient removal of cesium. Chem Eng J 444:136397. https://doi.org/10.1016/j.cej.2022.136397

    Article  CAS  Google Scholar 

  16. Belousov P, Semenkova A, Egorova T, Romanchuk A, Zakusin S, Dorzhieva O, Tyupina E, Izosimova Y, Tolpeshta I, Chernov M (2019) Cesium sorption and desorption on glauconite, bentonite, zeolite, and diatomite. Minerals 9:625. https://doi.org/10.3390/min9100625

    Article  CAS  Google Scholar 

  17. Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interface Sci 428:295–301. https://doi.org/10.1016/j.jcis.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Tsai S-C, Wang T-H, Li M-H, Wei Y-Y, Teng S-P (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J Hazard Mater 161:854–861. https://doi.org/10.1016/j.jhazmat.2008.04.044

    Article  CAS  PubMed  Google Scholar 

  19. Choi J-S, Jeon C, Choi SS (2023) Surface modification of petroleum residue-activated carbon using citric acid for enhanced cobalt removal from an aqueous solution. Korean J Chem Eng. https://doi.org/10.1007/s11814-023-1470-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Joshi JB, Pandit AB, Kataria KL, Kulkarni RP, Sawarkar AN, Tandon D, Ram Y, Kumar MM (2008) Petroleum residue upgradation via visbreaking: a review. Ind Eng Chem Res 47:8960–8988. https://doi.org/10.1021/ie0710871

    Article  CAS  Google Scholar 

  21. Kim JG, Kim JH, Song B-J, Jeon YP, Lee CW, Lee Y-S, Im JS (2016) Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel 167:25–30. https://doi.org/10.1016/j.fuel.2015.11.050

    Article  CAS  Google Scholar 

  22. Casco ME, Martínez-Escandell M, Silvestre-Albero J, Rodríguez-Reinoso F (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67:230–235. https://doi.org/10.1016/j.carbon.2013.09.086

    Article  CAS  Google Scholar 

  23. Kwak CH, Seo SW, Kim MI, Huh YS, Im JS (2021) Waste plastic for increasing softening point of pitch and specific surface area of activated carbon based on the petroleum residue. Carbon Lett 31:991–1000. https://doi.org/10.1007/s42823-020-00211-4

    Article  Google Scholar 

  24. Ning H, Guo Z, Wang W, Wang X, Yang Z, Ma Z, Tian Y, Wu C, Hao J, Wu M (2022) Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction. Carbon Lett 32:807–814. https://doi.org/10.1007/s42823-021-00316-4

    Article  Google Scholar 

  25. **e L, ** Z, Dai Z, Chang Y, Jiang X, Wang H (2020) Porous carbons synthesized by templating approach from fluid precursors and their applications in environment and energy storage: a review. Carbon 170:100–118. https://doi.org/10.1016/j.carbon.2020.07.034

    Article  CAS  Google Scholar 

  26. Wang T, Xu M, Han X, Yang S, Hua D (2019) Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J Hazard Mater 368:214–220. https://doi.org/10.1016/j.jhazmat.2019.01.048

    Article  CAS  PubMed  Google Scholar 

  27. Peng Q, Zhao H, Chen G, Yang Q, Cao X, **ong S, **ao A, Li G, Liu B, Liu Q (2023) Synthesis of novel magnetic pitch-based hypercrosslinked polymers as adsorbents for effective recovery of Ag+ with high selectivity. J Environ Manage 339:117763. https://doi.org/10.1016/j.jenvman.2023.117763

    Article  CAS  PubMed  Google Scholar 

  28. Hsu C-J, Chen Y-H, Hsi H-C (2020) Adsorption of aqueous Hg2+ and inhibition of Hg0 re-emission from actual seawater flue gas desulfurization wastewater by using sulfurized activated carbon and NaClO. Sci Total Environ 711:135172. https://doi.org/10.1016/j.scitotenv.2019.135172

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Tang L, Liang X, Liu Z, Yang Y (2016) Adsorption performance of acetone on activated carbon modified by microwave heating and alkali treatment. J Chem Eng Japan 49:958–966. https://doi.org/10.1252/jcej.15we333

    Article  CAS  Google Scholar 

  30. Noh JS, Schwarz JA (1990) Estimation of surface ionization constants for amphoteric solids. J Colloid Interface Sci 139:139–148. https://doi.org/10.1016/0021-9797(90)90451-S

    Article  CAS  Google Scholar 

  31. Donnet J, Boehm H, Stoeckli F (2002) Third international conference on carbon black mulhouse. Carbon 40:137

    Article  CAS  Google Scholar 

  32. Querejeta N, Rubiera F, Pevida C (2022) Experimental study on the kinetics of CO2 and H2O Adsorption on honeycomb carbon monoliths under cement flue gas conditions. ACS Sustain Chem Eng 10:2107–2124. https://doi.org/10.1021/acssuschemeng.1c07213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hazarika J, Pakshirajan K, Sinharoy A, Syiem MB (2015) Bioremoval of Cu (II), Zn (II), Pb (II) and Cd (II) by Nostoc muscorum isolated from a coal mining site. J Appl Phycol 27:1525–1534. https://doi.org/10.1007/s10811-014-0475-3

    Article  CAS  Google Scholar 

  34. Ho Y-S, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. https://doi.org/10.1016/S0923-0467(98)00076-1

    Article  CAS  Google Scholar 

  35. Zhou F, Liu Q, Zhang H, Chen Q, Kong B (2016) Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. Int J Biol Macromol 84:410–417. https://doi.org/10.1016/j.ijbiomac.2015.12.050

    Article  CAS  PubMed  Google Scholar 

  36. Smičiklas ID, Milonjić SK, Pfendt P, Raičević S (2000) The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep Purif Technol 18:185–194. https://doi.org/10.1016/S1383-5866(99)00066-0

    Article  Google Scholar 

  37. Chen C, Wang X (2006) Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149. https://doi.org/10.1021/ie060791z

    Article  CAS  Google Scholar 

  38. Srivastava S (2013) Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: a review. Adv Mater Lett 4:2–8. https://doi.org/10.5185/amlett.2013.icnano.110

    Article  CAS  Google Scholar 

  39. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. Can J Chem Eng 97:2781–2791. https://doi.org/10.1002/cjce.23632

    Article  CAS  Google Scholar 

  40. Lei S, Miyamoto J-i, Kanoh H, Nakahigashi Y, Kaneko K (2006) Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores. Carbon 44:1884–1890. https://doi.org/10.1016/j.carbon.2006.02.028

    Article  CAS  Google Scholar 

  41. Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour Ind 19:35–46. https://doi.org/10.1016/j.wri.2018.01.001

    Article  Google Scholar 

  42. Khandaker S, Kuba T, Kamida S, Uchikawa Y (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal. J Environ Chem Eng 5:1456–1464. https://doi.org/10.1016/j.jece.2017.02.014

    Article  CAS  Google Scholar 

  43. Wang X, Yu J (2015) Application of Fe3O4/graphene oxide composite for the separation of Cs (I) and Sr (II) from aqueous solution. J Radioanal Nucl Chem 303:807–813. https://doi.org/10.1007/s10967-014-3431-4

    Article  CAS  Google Scholar 

  44. Yavari R, Huang Y, Ahmadi S (2011) Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287:393–401. https://doi.org/10.1007/s10967-010-0909-6

    Article  CAS  Google Scholar 

  45. Lee HY, Kim HS, Jeong H-K, Park M, Chung D-Y, Lee K-Y, Lee E-H, Lim WT (2017) Selective removal of radioactive cesium from nuclear waste by zeolites: on the origin of cesium selectivity revealed by systematic crystallographic studies. J Phys Chem C 121:10594–10608. https://doi.org/10.1021/acs.jpcc.7b02432

    Article  CAS  Google Scholar 

  46. Van Tendeloo L, de Blochouse B, Dom D, Vancluysen J, Snellings R, Martens JA, Kirschhock CE, Maes A, Breynaert E (2015) Cation exchange properties of zeolites in hyper alkaline aqueous media. Environ Sci Technol 49:1729–1737. https://doi.org/10.1021/es505345r

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suk Soon Choi or Choong Jeon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JS., Choi, S.S. & Jeon, C. Adsorptive removal of cesium using surface-modified petroleum residue pitch with NaClO. Carbon Lett. 34, 1431–1441 (2024). https://doi.org/10.1007/s42823-024-00699-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-024-00699-0

Keywords

Navigation