Log in

Electrospun and electropolymerized carbon nanofiber–polyaniline–Cu material as a hole transport material for organic solar cells

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764

    Google Scholar 

  2. Mrabet Z, Alsamara M, Saleh AS, Anwar S (2019) Urbanization and non-renewable energy demand: a comparison of developed and emerging countries. Energy 170:832–839

    Google Scholar 

  3. Tripathi L, Mishra AK, Dubey AK, Tripathi CB, Baredar P (2016) Renewable energy: an overview on its contribution in current energy scenario of India. Renew Energy Rev 60:226–233

    Google Scholar 

  4. Kuppu SV, Jeyaraman AR, Guruviah PK, Thambusamy S (2018) Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Curr Appl Phys 18:619–625

    Google Scholar 

  5. Ahmad Z, Mishra A, Abdulrahim SM, Touati F (2020) Electrical equivalent circuit (EEC) based impedance spectroscopy analysis of HTM free perovskite solar cells. J Electroanal Chem 871:114294

    CAS  Google Scholar 

  6. Majumder T, Dhar S, Chakraborty P, Debnath K, Mondal SP (2018) Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications. J Electroanal Chem 813:92–101

    CAS  Google Scholar 

  7. Abdulrazzaq OA, Saini V, Bourdo S, Dervishi E, Biris AS (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31:427–442

    CAS  Google Scholar 

  8. Chidichimo G, Filippelli L (2010) Organic solar cells: problems and perspectives. Int J Photoenerg 1:123534

    Google Scholar 

  9. Ouyang D, Huang Z, Choy WCH (2019) Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells. Adv Funct Mat 29:1804660

    Google Scholar 

  10. Li S, Cao YL, Li WH, Bo ZS (2021) A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Mat 40:2712–2729

    CAS  Google Scholar 

  11. Kang MG, Kim MS, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mat 20:4408–4413

    CAS  Google Scholar 

  12. Li X, Yang J, Jiang Q, Lai H, Li S, Tan Y, Chen Y, Li S (2019) Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability. J Mater Chem A 7:7065–7073

    CAS  Google Scholar 

  13. Cheng F, Wu Y, Shen Y, Cai X, Li L (2017) Enhancing the performance and stability of organic solar cells using solution processed MoO3 as hole transport layer. RSC Adv 7:37952

    CAS  Google Scholar 

  14. Lim KG, Ahn S, Kim H, Choi MR, Huh DH, Lee TW (2016) Self-doped conducting polymer as a hole-extraction layer in organic–inorganic hybrid perovskite solar cells. Adv Mater Interf 3:1500678

    Google Scholar 

  15. Keru G, Ndungu PG, Nyamori VO (2014) A review on carbon nanotube/polymer composites for organic solar cells. Int J Energy Res 38:1635–1653

    CAS  Google Scholar 

  16. Demir F (2021) Effect of aluminum reinforcement on the structural, physicochemical, and electrochemical properties of polyaniline-derived polymer/aluminum composites by in situ polymerization. Electrochim Acta 385:138444

    CAS  Google Scholar 

  17. Lee K, Cho KH, Ryu J, Yun J, Yu H, Lee J, Na W, Jang J (2017) Low-cost and efficient perovskite solar cells using a surfactant- modified polyaniline:poly(styrenesulfonate) hole transport material. Electrochim Acta 224:600–607

    CAS  Google Scholar 

  18. Yan W, Li Y, Sun W, Peng H, Ye S, Liu Z, Bian Z, Huang C (2014) High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization. RSC Adv 4:33039–33046

    CAS  Google Scholar 

  19. Chen W, Li X, Li Y, Li Y (2020) A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy Environ Sci 13:1971–1996

    CAS  Google Scholar 

  20. Cui Y, Yao H, Gao B, Qin Y, Zhang S, Yang B, He C, Xu B, Hou J (2017) Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J Am Chem Soc 139:7302–7309

    CAS  Google Scholar 

  21. Kwiatkowska E, Mech W, Wincukiewicz A, Korona KP, Zarębska K, Kamińska SM (2021) Investigation of polyaniline doped with camphorsulfonic acid in chloroform solution as a hole transporting layer in PTB7: PCBM and perovskite-based solar cells. Electrochim Acta 380:138264

    CAS  Google Scholar 

  22. Santos MC, Bizeto MA, Camilo FF (2021) Polyaniline–niobium oxide nanohybrids with photocatalytic activity under visible light irradiation. New J Chem 45:8619–8628

    CAS  Google Scholar 

  23. Menaka C, Manisankar P, Stalin T (2015) Preparation and characterization of poly(o-anisidine) with the influence of surfactants on stainless steel by electrochemical polymerization as a counter electrode for dye-sensitized solar cells. J Appl Polym Sci 132:42310

    Google Scholar 

  24. Menaka C, Manisankar P, Stalin T (2015) In situ electrochemical synthesis of a poly(o-anisidine) counter electrode for a dye-sensitized solar cell. J Appl Pol Sci 132:42041

    Google Scholar 

  25. Han YK, Chang MY, Ho KS, Hsieh TH, Tsai JL, Huang PC (2014) Electrochemically deposited nano polyaniline films as hole transporting layers in organic solar cells. Sol Energy Mat Sol Cells 128:198–203

    CAS  Google Scholar 

  26. Belarb E, Blas-Ferrando VM, Haro M, Maghraoui-Meherzi H, Gimenez S (2016) Electropolymerized polyaniline: a promising hole selective contact in organic photoelectrochemical cells. Chem Eng Sci 154:143–149

    Google Scholar 

  27. Narayanan V, Mani MK, Thambusamy S (2020) Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers. J Mol Str 1221:128767

    CAS  Google Scholar 

  28. Balakrishnan SB, Thambusamy S (2020) Preparation of silver nanoparticles and riboflavin embedded electrospun polymer nanofibrous scaffolds for in vivo wound dressing application. Proc Biochem 88:148–158

    CAS  Google Scholar 

  29. Tang K, Li Y, Cao H, Su C, Zhang Z, Zhang Y (2016) Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor. Electrochim Acta 190:678–688

    CAS  Google Scholar 

  30. Bora A, Mohan K, Phukan P, Dolui SK (2018) A low cost carbon black/ polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells. Electrochim Acta 259:233–244

    CAS  Google Scholar 

  31. Li L, Zhang X, Wang D, Zhang W, Li X, Zhao X, Zhang Q, Gu L, Yu Z, Wu M (2018) Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode. Electrochim Acta 280:94–100

    CAS  Google Scholar 

  32. Li R, Pen X, Han X, Mak CH, Cheng KC, Permatasari Santoso S, Shen HH, Ruan Q, Cao F, Yu ET, Chu PK, Hsu HY (2021) Cost-effective liquid-junction solar devices with plasma-implanted Ni/TiN/CNF hierarchically structured nanofibers. J Electroanal Chem 887:115167

    Google Scholar 

  33. Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, Thambusamy S (2021) Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. Spectrochim Acta Part A 249:119308

    CAS  Google Scholar 

  34. Wang J, Qin Q, Li F, Anjarsari Y, Sun W, Azzahiidah R, Zou J, **ang K, Ma H, Jiang J, Arramel, (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  35. Jiang J, Li F, Bai S, Wang Y, **ang K, Zou J, Hsu J-P (2023) Carbonitride mxene Ti3CN(OH) × @MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res 16:4656–4663

    CAS  Google Scholar 

  36. Md Golam R, Alper K, Babak A, Reza S-Y (2022) 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater Appl 5:56

    Google Scholar 

  37. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, **ang K, Ma H, Arramel, (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  38. Liu S, Liu M, Xu Q, Zeng G (2022) Lithium-ion conduction in covalent organic frameworks. Chin J Struct Chem 41:2211003–2211017

    CAS  Google Scholar 

  39. Jiang J, **ong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24

    CAS  Google Scholar 

  40. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221

    CAS  Google Scholar 

  41. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    CAS  Google Scholar 

  42. Zou J, Liao G, Jiang J, **ong Z, Bai S, Wang H, Wu P, Zhang P, Li X (2022) In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 iso-type step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin J Struct Chem 41:2201025–2201033

    CAS  Google Scholar 

  43. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285

    Google Scholar 

  44. Chen Y, Tu C, Liu Y, Liu P, Gong P, Wu G, Huang X, Chen J, Liu T, Jiang J (2023) Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett 33:561–571

    Google Scholar 

  45. Kim BH, Yang KS (2014) Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning. J Electroanal Chem 71:492–496

    Google Scholar 

  46. Yan Y, Liu X, Yan J, Guan C, Wang J (2020) Electrospun nanofibers for new generation flexible energy storage. Energy Environ Mater 4:502–521

    Google Scholar 

  47. Miao X, Liu Y, Zhang X, Chen S, Chen Z, Chen Y, Lin J, Zhang Y (2021) Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life. Electrochim Acta 390:138819

    Google Scholar 

  48. Kim BH, Yang KS, Woo HG (2012) Physical and electrochemical studies of polyphenylsilane-derived porous carbon nanofibers produced via electrospinning. Electrochim Acta 59:202–206

    CAS  Google Scholar 

  49. Habib M, Feteha M, Soliman M, Motagaly AA, El-Sheikh S, Ebrahim S (2020) Effect of doped polyaniline/graphene oxide ratio as a hole transport layer on the performance of perovskite solar cell. J Mater Sci Mater Electron 31:18870–18882

    Google Scholar 

  50. Kakaei K, Khodadoost S, Gholipour M, Shouraei N (2021) Core-shell polyaniline functionalized carbon quantum dots for supercapacitor. J Phys Chem Sol 148:109753

    CAS  Google Scholar 

  51. AladagTanik N, Demirkan E, Aykut Y (2018) Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode. J Phys Chem Sol 118:73–79

    CAS  Google Scholar 

  52. Chao Wang J, Qiao X, Shi W, Gao H, Guo L (2022) Enhanced photothermal selective conversion of CO2 to CH4 in water vapor over rod-like Cu and N Co-doped TiO2. Chin J Struct Chem 41:2212033–2212042

    Google Scholar 

  53. Ren T, Sheng Y, Wang M, Ren K, Wang L, Xu Y (2022) Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia. Chin J Struct Chem 41:2212089–2212106

    CAS  Google Scholar 

  54. Cao Y, Li W, Liu Z, Zhao Z, **ao Z, Zi W, Cheng N (2020) Ligand modification of Cu2ZnSnS4 nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%. J Mater Chem A 8:12080–12088

    CAS  Google Scholar 

  55. Yu YY, Chien WC, Wang YJ (2016) Copper oxide hole transport materials for heterojunction solar cell applications. Thin Solid Films 618:134–140

    CAS  Google Scholar 

  56. Das S, Choi JY, Alford TL (2015) P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol Energy Mat Sol Cells 133:255–259

    CAS  Google Scholar 

  57. Bhargav R, Chaudhary N, Rathi S, Shahjad BD, Gupta S, Patra A (2019) Copper bromide as an efficient solution-processable hole transport layer for organic solar cells: effect of solvents. ACS Omega 4:6028–6034

    CAS  Google Scholar 

  58. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212–216

    CAS  Google Scholar 

  59. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Cu2+ as the electrode material for electrochemical supercapacitors. RSC Adv 4:5547–5552

    CAS  Google Scholar 

  60. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomat 3:498–523

    CAS  Google Scholar 

  61. Maniyazagan M, Mariadasse R, Nachiappan M, Jeyakanthan J, Lokanath NK, Naveen S, Sivaraman G, Muthuraja P, Manisankar P, Stalin T (2018) Synthesis of rhodamine based organic nanorods for efficient chemosensor probe for Al (III) ions and its biological applications. Sens Act B Chem 254:795–804

    CAS  Google Scholar 

  62. Maniyazagan M, Mariadasse R, Jeyakanthan J, Lokanath NK, Naveen S, Premkumar K, Muthuraja P, Manisankar P, Stalin T (2017) Rhodamine based “turn–on” molecular switch FRET–sensor for cadmium and sulfide ions and live cell imaging study. Sens Act B Chem 238:565–577

    CAS  Google Scholar 

  63. Ferdosian F, Ebadi M, Mehrabian RZ, Golsefidi MA, Moradi AV (2019) Application of electrochemical techniques for determining and extracting natural product (EgCg) by the synthesized conductive polymer electrode (Ppy/Pan/rGO) impregnated with nano-particles of TiO2. Sci Rep 9:3940

    Google Scholar 

  64. Chetia M, Konwar M, Pegua B, Konwer S, Sarma D (2021) Synthesis of copper containing polyaniline composites through interfacial polymerisation: an effective catalyst for click reaction at room temperature. J Mol Struc 1233:130019

    CAS  Google Scholar 

  65. Zhang Y, Liu J, Zhang Y, Liu J, Duan Y (2017) Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv 7:54031–54038

    CAS  Google Scholar 

  66. Chokkiah B, Eswaran M, Alothman AA, Alsawat M, Ifseisi AA, Alqahtani KN, Dhanusuraman R (2021) Facile fabrication of hollow polyaniline/carbon nanofibers-coated platinum nanohybrid composite electrode as improved anode electrocatalyst for methanol oxidation. J Mater Sci: Mater Electron 33:8768–8776

    Google Scholar 

  67. He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27:5582–5588

    CAS  Google Scholar 

  68. Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv 4:40580–40587

    CAS  Google Scholar 

  69. Viswanathan A, Shetty AN (2018) Single step synthesis of rGO, copper oxide and polyaniline nanocomposites for high energy supercapacitors. Electrochim Acta 289:204–217

    CAS  Google Scholar 

  70. Zhang Z, Deng X, Sunarso J, Cai R, Chu S, Miao J, Zhou W, Shao Z (2017) Two-step fabrication of Li4Ti5O12-coated carbon nanofibers as a flexible film electrode for high-power lithium-ion batteries. Chem Electro Chem 4:2286–2292

    CAS  Google Scholar 

  71. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480

    Google Scholar 

  72. Lee K, Cho S, Kim M, Kim J, Ryu J, Shin KY, Jang J (2015) Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. J Mater Chem A 3:19018–19026

    CAS  Google Scholar 

  73. Ashokkumar SP, Yesappa L, Vijeth H, Niranjana M, Vandana M, Devendrappa H (2019) Structure, morphology, thermal and electrochemical studies of electrochemically synthesized polyaniline/copper oxide nanocomposite for energy storage devices. Mater Res Express 6:125557

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Stalin, thank you very much to the Science and Engineering Research Board (SERB), Government of India. The paperwork funded by SERB File No.: EEQ/2018/001455.RUSA-Phase 2.0 grant No.F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Edn., Govt. of India, Dt.09.10.2018, TNRUSA, Chennai, TAMILNADU, and ALU, Dt.16.12.2022. Additionally, this project is supported by Researchers Supporting Project number (RSPD2023R712), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

ES: conceptualization, methodology, investigation, writing—original draft. CG: methodology, investigation. MIK: methodology, investigation. VG: formal analysis. VN: resources, investigation. KV: investigation. RR: supervision, ST: supervision, writing—review and editing.

Corresponding authors

Correspondence to Rajaram Rajamohan or Stalin Thambusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugasundaram, E., Govindasamy, C., Khan, M.I. et al. Electrospun and electropolymerized carbon nanofiber–polyaniline–Cu material as a hole transport material for organic solar cells. Carbon Lett. 33, 2223–2235 (2023). https://doi.org/10.1007/s42823-023-00578-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00578-0

Keywords

Navigation