Log in

Microstructure characteristics and hydrogen storage kinetic of nano MgNi-REO alloys

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Mg81Ni19-8wt.% REO (oxides of Lanthanum and Cerium) alloys were successfully prepared using mechanical alloying method with Mg-Ni alloy and REO powder. Phase analysis, structural characterization, and microstructure imagine of the alloys were conducted using X-ray diffraction (XRD), metallurgical microscope, and transmission electron microscopy (TEM) methods. Multi-phase structures, including the primary phase of Mg2Ni and several secondary phases of Mg + Mg2Ni, MgNi-LaO, and MgNi-CeO, were found in in the as-cast Mg81Ni19-8wt.% REO alloys. XRD and TEM results showed that Ce exhibits variable valence behavior at various stages, and the addition of REO promotes the nanocrystalline of the alloy. The hydrogen absorption capacity of ball-milled Mg81Ni19 and Mg81Ni19-8wt.%REO alloy for 2 h at 343 K is 1.34 wt.% and 1.83 wt.%, which are much larger than 0.94 wt.% of as-cast Mg81Ni19 alloy. The addition of REO led to a decrease of the thermal decomposition temperature of the alloy hydride by approximately 20 K and a reduction of the activation energy of the hydrogen desorption reaction by 10% and 13%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  2. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4:157–175. https://doi.org/10.1016/S1364-0321(99)00011-8

    Article  Google Scholar 

  3. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250. https://doi.org/10.1016/j.rser.2007.01.023

    Article  CAS  Google Scholar 

  4. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156. https://doi.org/10.1016/j.jiec.2013.07.037

    Article  CAS  Google Scholar 

  5. Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C (2009) Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int J Hydrog Energy 34:7081–7095. https://doi.org/10.1016/j.ijhydene.2008.06.051

    Article  CAS  Google Scholar 

  6. Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603. https://doi.org/10.1016/j.ijhydene.2009.02.067

    Article  CAS  Google Scholar 

  7. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrog Energy 34:4569–4574. https://doi.org/10.1016/j.ijhydene.2008.07.115

    Article  CAS  Google Scholar 

  8. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strategy Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  9. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  10. Chen Y, Tu C, Liu Y, Liu P, Gong P, Wu G, Jiang J (2023) Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett 33:561–571. https://doi.org/10.1007/s42823-022-00445-4

    Article  Google Scholar 

  11. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Arramel MH (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  12. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173. https://doi.org/10.1039/B809990C

    Article  CAS  Google Scholar 

  13. Ball M, Wietschel M (2009) The future of hydrogen: opportunities and challenges☆. Int J Hydrog Energy 34:615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  CAS  Google Scholar 

  14. Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Zhai T (2022) Strategic design and fabrication of MXenes-Ti3CNCl2@ CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  15. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu JP, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  16. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627. https://doi.org/10.1016/j.enconman.2018.03.088

    Article  CAS  Google Scholar 

  17. Schlapbach L, Züttel A (2010) Hydrogen-storage materials for mobile applications. Mater Sustain Energy 414:353

    Google Scholar 

  18. Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sustain Energy Rev 50:457–469. https://doi.org/10.1016/j.rser.2015.05.011

    Article  CAS  Google Scholar 

  19. Bellosta von Colbe J, Ares J-R, Barale J, Baricco M, Buckley C, Capurso G, Gallandat N, Grant DM, Guzik MN, Jacob I, Jensen EH, Jensen T, Jepsen J, Klassen T, Lototskyy MV, Manickam K, Montone A, Puszkiel J, Sartori S, Sheppard DA, Stuart A, Walker G, Webb CJ, Yang H, Yartys V, Züttel A, Dornheim M (2019) Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives. Int J Hydrog Energy 44:7780–7808. https://doi.org/10.1016/j.ijhydene.2019.01.104

    Article  CAS  Google Scholar 

  20. Hirscher M, Becher M (2003) Hydrogen storage in carbon nanotubes. J Nanosci Nanotechnol 3:3–17. https://doi.org/10.1166/jnn.2003.172

    Article  CAS  Google Scholar 

  21. Qiao W, Yin D, Zhao S, Ding N, Liang L, Wang C, Wang L, He M, Cheng Y (2023) Effects of Cu do** on the hydrogen storage performance of Ti-Mn-based, AB2-type alloys. Chem Eng J 465:142837. https://doi.org/10.1016/j.cej.2023.142837

    Article  CAS  Google Scholar 

  22. Zou J, Liao G (2022) In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 Iso-type step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin J Struct Chem 41:25–33. https://doi.org/10.14102/j.cnki.0254-5861.2021-0039

    Article  Google Scholar 

  23. Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compd 293–295:877–888. https://doi.org/10.1016/S0925-8388(99)00384-9

    Article  Google Scholar 

  24. Yartys VA, Lototsky MV (2004) An overview of hydrogen storage methods. In: Veziroglu TNY, Zaginaichenko S, Schur DV, Baranowski B, Shpak AP, Skorokhod VV (eds) Hydrogen materials science and chemistry of carbon nanomaterials. Springer, pp 75–104

    Chapter  Google Scholar 

  25. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  26. Bai S, Yang M, Jiang J, He X, Zou J, **ong Z, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater Appl 5:78. https://doi.org/10.1038/s41699-021-00259-4

    Article  CAS  Google Scholar 

  27. Boateng E, Chen A (2020) Recent advances in nanomaterial-based solid-state hydrogen storage. Mater Today Adv 6:100022. https://doi.org/10.1016/j.mtadv.2019.100022

    Article  Google Scholar 

  28. Deng F, Jiang J, Sirés I (2023) State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Lett 33:17–34. https://doi.org/10.1007/s42823-022-00420-z

    Article  Google Scholar 

  29. Wang J, Qin Q, Li F, Anjarsari Y, Sun W, Azzahiidah R, Zou J, **ang K, Ma H, Jiang J, Arramel (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  30. Wang J, Wang G, Cheng B, Yu J, Fan J (2021) Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal 42:56–68. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  31. Hanada N, Ichikawa T, Fujii H (2005) Catalytic effect of nanoparticle 3D-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B 109:7188–7194. https://doi.org/10.1021/jp044576c

    Article  CAS  Google Scholar 

  32. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J Alloys Compd 291:295–299. https://doi.org/10.1016/S0925-8388(99)00268-6

    Article  CAS  Google Scholar 

  33. Abe JO, Popoola API, Ajenifuja E, Popoola OM (2019) Hydrogen energy, economy and storage: Review and recommendation. Int J Hydrog Energy 44:15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068

    Article  CAS  Google Scholar 

  34. Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer

    Book  Google Scholar 

  35. Martin M, Gommel C, Borkhart C, Fromm E (1996) Absorption and desorption kinetics of hydrogen storage alloys. J Alloys Compd 238:193–201. https://doi.org/10.1016/0925-8388(96)02217-7

    Article  CAS  Google Scholar 

  36. Wang H, Lin HJ, Cai WT, Ouyang LZ, Zhu M (2016) Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems: a review of recent progress. J Alloys Compd 658:280–300. https://doi.org/10.1016/j.jallcom.2015.10.090

    Article  CAS  Google Scholar 

  37. Zhang Q, Zang L, Huang Y, Gao P, Jiao L, Yuan H, Wang Y (2017) Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int J Hydrog Energy 42:24247–24255. https://doi.org/10.1016/j.ijhydene.2017.07.220

    Article  CAS  Google Scholar 

  38. **e L, Li J, Zhang T, Song L, Kou H (2017) Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase. J Power Sources 338:91–102. https://doi.org/10.1016/j.jpowsour.2016.11.025

    Article  CAS  Google Scholar 

  39. Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242. https://doi.org/10.1016/S0925-8388(00)01284-6

    Article  CAS  Google Scholar 

  40. Zhang C, Liang L, Zhao S, Wu Z, Wang S, Yin D, Wang Q, Wang L, Wang C, Cheng Y (2023) Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. https://doi.org/10.1007/s12274-023-5636-8

    Article  Google Scholar 

  41. Pukazhselvan D, Capurso G, Maddalena A, Lo Russo S, Fagg DP (2014) Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold. Int J Hydrog Energy 39:20045–20053. https://doi.org/10.1016/j.ijhydene.2014.10.038

    Article  CAS  Google Scholar 

  42. Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater 56:841–846. https://doi.org/10.1016/j.scriptamat.2007.01.003

    Article  CAS  Google Scholar 

  43. Aguey-Zinsou K-F, Ares-Fernández J-R (2010) Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ Sci 3:526. https://doi.org/10.1039/b921645f

    Article  CAS  Google Scholar 

  44. Zhang Y, Wei X, Zhang W, Yuan Z, Gao J, Ren H (2021) Catalytic effect comparison of TiO2 and La2O3 on hydrogen storage thermodynamics and kinetics of the as-milled La-Sm-Mg-Ni-based alloy. J Magnes Alloys 9:2063–2077. https://doi.org/10.1016/j.jma.2021.03.006

    Article  CAS  Google Scholar 

  45. Du J, Lan Z, Zhang H, Lü S, Liu H, Guo J (2019) Catalytic enhanced hydrogen storage properties of Mg-based alloy by the addition of reduced graphene oxide supported V2O3 nanocomposite. J Alloys Compd 802:660–667. https://doi.org/10.1016/j.jallcom.2019.06.221

    Article  CAS  Google Scholar 

  46. Chen B-H, Chuang Y-S, Chen C-K (2016) Improving the hydrogenation properties of MgH2 at room temperature by do** with nano-size ZrO2 catalyst. J Alloys Compd 655:21–27. https://doi.org/10.1016/j.jallcom.2015.09.163

    Article  CAS  Google Scholar 

  47. Long S, Zou J, Chen X, Zeng X, Ding W (2014) A comparison study of Mg–Y2O3 and Mg–Y hydrogen storage composite powders prepared through arc plasma method. J Alloys Compd 615:S684–S688. https://doi.org/10.1016/j.jallcom.2013.11.159

    Article  CAS  Google Scholar 

  48. Liu P, Chen H, Yu H, Liu X, Jiang R, Li X, Zhou S (2019) Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement. Int J Hydrog Energy 44:13606–13612. https://doi.org/10.1016/j.ijhydene.2019.03.258

    Article  CAS  Google Scholar 

  49. Zhang H, Fu L, Xuan W, Qi J (2020) Surface modification of the La1.7Mg1.3Ni9 alloy with trace Y2O3 related to the electrochemical hydrogen storage properties. Renew Energy 145:1572–1577. https://doi.org/10.1016/j.renene.2019.07.080

    Article  CAS  Google Scholar 

  50. Zou J, Zeng X, Ying Y, Chen X, Guo H, Zhou S, Ding W (2013) Study on the hydrogen storage properties of core–shell structured Mg–RE (RE = Nd, Gd, Er) nano-composites synthesized through arc plasma method. Int J Hydrog Energy 38:2337–2346. https://doi.org/10.1016/j.ijhydene.2012.11.145

    Article  CAS  Google Scholar 

  51. Long S, Zou J, Liu Y, Zeng X, Ding W (2013) Hydrogen storage properties of a Mg–Ce oxide nano-composite prepared through arc plasma method. J Alloys Compd 580:S167–S170. https://doi.org/10.1016/j.jallcom.2013.02.063

    Article  CAS  Google Scholar 

  52. Zou J, Zeng X, Ying Y, Stephane P, Ding W (2012) Preparation and hydrogen sorption properties of a nano-structured Mg based Mg–La–O composite. Int J Hydrog Energy 37:13067–13073. https://doi.org/10.1016/j.ijhydene.2012.04.136

    Article  CAS  Google Scholar 

  53. Zhang Y, Li Y, Shang H, Yuan Z, Qi Y, Dong X, Guo S (2018) Hydrogen storage performance of the as-milled Y Mg Ni alloy catalyzed by CeO2. Int J Hydrog Energy 43:1643–1650. https://doi.org/10.1016/j.ijhydene.2017.11.112

    Article  CAS  Google Scholar 

  54. Wang F, Li R, Ding C, Wan J, Yu R, Wang Z (2016) Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy. Int J Hydrog Energy 41:17421–17432. https://doi.org/10.1016/j.ijhydene.2016.07.077

    Article  CAS  Google Scholar 

  55. Peng D, Ding Z, Zhang L, Fu Y, Wang J, Li Y, Han S (2018) Remarkable hydrogen storage properties and mechanisms of the shell–core MgH2@carbon aerogel microspheres. Int J Hydrog Energy 43:3731–3740. https://doi.org/10.1016/j.ijhydene.2018.01.004

    Article  CAS  Google Scholar 

  56. **ao X, Liu G, Peng S, Yu K, Li S, Chen C, Chen L (2010) Microstructure and hydrogen storage characteristics of nanocrystalline Mg+xwt% LaMg2Ni (x=0–30) composites. Int J Hydrog Energy 35:2786–2790. https://doi.org/10.1016/j.ijhydene.2009.05.024

    Article  CAS  Google Scholar 

  57. Harrison JT, Pantoja E, Jang M-H, Gupta MC (2020) Laser sintered PbSe semiconductor thin films for Mid-IR applications using nanocrystals. J Alloys Compd 849:156537. https://doi.org/10.1016/j.jallcom.2020.156537

    Article  CAS  Google Scholar 

  58. House SD, Vajo JJ, Ren C, Rockett AA, Robertson IM (2015) Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Mater 86:55–68. https://doi.org/10.1016/j.actamat.2014.11.047

    Article  CAS  Google Scholar 

  59. Balcerzak M (2017) Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys. Int J Hydrog Energy 42:23698–23707. https://doi.org/10.1016/j.ijhydene.2017.03.224

    Article  CAS  Google Scholar 

  60. Mustafa NS, Ismail M (2017) Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder. J Alloys Compd 695:2532–2538. https://doi.org/10.1016/j.jallcom.2016.11.158

    Article  CAS  Google Scholar 

  61. Yong H, Guo S, Yuan Z, Zhang W, Qi Y, Zhao D, Zhang Y (2020) Phase evolution, hydrogen storage thermodynamics and kinetics of ternary Mg90Ce5Sm5 alloy. J Rare Earths 38:633–641. https://doi.org/10.1016/j.jre.2019.05.012

    Article  CAS  Google Scholar 

  62. Paskevicius M, Sheppard DA, Buckley CE (2010) Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc 132:5077–5083. https://doi.org/10.1021/ja908398u

    Article  CAS  Google Scholar 

  63. Liu H, He P, Feng JC, Cao J (2009) Kinetic study on nonisothermal dehydrogenation of TiH2 powders. Int J Hydrog Energy 34:3018–3025. https://doi.org/10.1016/j.ijhydene.2009.01.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (52261041) and the Natural Science Foundation of Inner Mongolia, China (2020LH01006, 2020LH05024 and 2022MS05011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Yan, X., Li, X. et al. Microstructure characteristics and hydrogen storage kinetic of nano MgNi-REO alloys. Carbon Lett. 33, 2211–2222 (2023). https://doi.org/10.1007/s42823-023-00557-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00557-5

Keywords

Navigation