Log in

Enhancing Phosphate Uptake and Antifungal Activity in Tomato Plants via Bacillus licheniformis Mutagenesis: Evaluating Growth Parameters

  • Soil and Agriculture - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of the investigation was to improve phosphate solubilization in tomato plants by Bacillus licheniformis, a rhizobacterium that promotes plant growth. Ultraviolet (UV) radiation, Ethyl methanesulfonate (EMS) and Ethidium bromide (EtBr) mutagenesis produced twenty-one mutants. Phosphate solubilization was higher in the PM7 (physical mutant) (121.00 g mL−1) than in the wild type (82.00 g mL−1). PM7 showed high antifungal activity against Phytophthora capsici, Fusarium oxysporum and Dematophora necatrix besides increased siderophore production and HCN production. In a net-house experiment, PM7 improved root and shoot parameters, P assimilation and soil P availability in tomato plants. This study demonstrates the potential of PM7 as an effective rhizobacterium for enhancing nutrient availability and plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Khan AA, Jilani G, Akhtar MS, Naqvi SMS (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms, and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  2. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. https://doi.org/10.1016/s0734-9750(99)00014-2

    Article  CAS  PubMed  Google Scholar 

  3. Rinu K, Pandey A (2001) Slow and steady phosphate solubilization by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27:1055–1062. https://doi.org/10.1007/s11274-010-0550-0

    Article  CAS  Google Scholar 

  4. Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  5. Karpagam T, Nagalakshmi PK (2014) Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int J Curr Microbiol App Sci 3:601–614

    CAS  Google Scholar 

  6. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  7. Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci Technol 81:18–23

    Google Scholar 

  8. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YP, Rekha PD, Arun AB (2006) Phosphate solubilizing bacteria from subtropical soil and their tri-calcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  10. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, US, pp 352–355

  11. Achal V, Savant VV, Reddy MS (2007) Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39:695–699

    Article  CAS  Google Scholar 

  12. Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Curr Sci 59:39–45

    CAS  Google Scholar 

  13. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Curr Sci 160:47–56

    CAS  Google Scholar 

  14. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  15. Vincent JM (1947) Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850. https://doi.org/10.1038/159850b0

    Article  CAS  PubMed  Google Scholar 

  16. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Circular. US Department of Agriculture, Washington, DC

    Google Scholar 

  17. Jackson ML (1973) Soil chemical analysis. Prentice Hall, New Delhi, pp 106–203

    Google Scholar 

  18. Guleria S, Walia A, Chauhan A (2013) Mutagenesis of alkalophilic Cellulosimicrobium sp. CKMX1 for hyper-production of cellulose-free xylanase in solid state fermentation of apple pomace. Proc Natl Acad Sci India Sect B Biol Sci 85:241–252. https://doi.org/10.1007/s40011-013-0273-8

    Article  CAS  Google Scholar 

  19. Tripura C, Sashidhar B, Podile AR (2007) Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol 54:79–84

    Article  CAS  PubMed  Google Scholar 

  20. Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260. https://doi.org/10.2323/jgam.40.255

    Article  CAS  Google Scholar 

  21. Blumer C, Haas D (2000) Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173(3):170–177. https://doi.org/10.1007/s002039900127

    Article  CAS  PubMed  Google Scholar 

  22. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogae L.) by application of plant growth promoting rhizobacterial. Microbiol Res 159(4):371–394. https://doi.org/10.1016/j.micres.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. https://doi.org/10.1590/s1415-47572012000600020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reddy, P.P. (2014). Mechanisms of Biocontrol. In: Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1973-6_4

  25. Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent Pseudomonad. Plant Growth Regul 42:239–244. https://doi.org/10.1023/B:GROW.0000026477.10681.d2

    Article  CAS  Google Scholar 

  26. Ramirez AR, Abarca E, Aquilar UG, Jones HPM, Barboza JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soyabean seeds. J Food Sci 69(5):131–134. https://doi.org/10.1111/j.1365-2621.2004.tb10721.x

    Article  Google Scholar 

  27. Cazorla FM, Romero D, Garcia AP (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959

    Article  CAS  PubMed  Google Scholar 

  28. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 17:265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  Google Scholar 

  29. Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93. https://doi.org/10.1078/0944-5013-00081

    Article  CAS  PubMed  Google Scholar 

  30. Sivasakthi S, Saranraj P, Sujatha D (2015) Mutation based strain improvement of PGPR isolates (Pseudomonas fluorescens and Bacillus subtilis) for the improvement of growth and yield of paddy (Oryza sativa L.). American-Eurasian J Agric Environ Sci 15(8):1591–1601. https://doi.org/10.5829/idosi.aejaes.2015.15.8.94149

    Article  Google Scholar 

  31. Mohamed HM, Ibrahim EMA (2011) Effect of inoculation with Bacillus polymyxa mutants on growth, phosphorus and iron uptake by tomato (Lycopersicon esculentum L.) in calcareous soils. Int J Soil Sci 6:176–187. https://doi.org/10.3923/ijss.2011.176.187

    Article  CAS  Google Scholar 

  32. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144. https://doi.org/10.1007/s00284-007-9058-8

    Article  CAS  PubMed  Google Scholar 

  33. Yu X, Liu X, Zhu TH, Liu GH, Mao C (2011) Isolation and characterization of phosphate solubilization bacteria from walnut and their effect on growth and phosphorus mobilization. Biol Fertil Soils 47:437–446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Basic Sciences, Microbiology section, Dr. Yashwant Singh Parmar, University of Horticulture and Forestry, Nauni, Solan, H.P, India for providing necessary facilities to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Admir Giachini

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Chauhan, A., Bhardwaj, S. et al. Enhancing Phosphate Uptake and Antifungal Activity in Tomato Plants via Bacillus licheniformis Mutagenesis: Evaluating Growth Parameters. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01453-4

Keywords

Navigation