Log in

Phenotypic and molecular characterization of clinically isolated antibiotics-resistant S. aureus (MRSA), E. coli (ESBL) and Acinetobacter 1379 bacterial strains

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic-resistant bacteria causing nosocomial infections pose a significant global health concern. This study focused on examining the lipid profiles of both non-resistant and clinically resistant strains of Staphylococcus aureus (MRSA 1418), E. coli (ESBL 1384), and Acinetobacter 1379. The main aim was to investigate the relationship between lipid profiles, hydrophobicity, and antibiotic resistance so as to identify the pathogenic potential and resistance factors of strains isolated from patients with sepsis and urinary tract infections (UTIs). The research included various tests, such as antimicrobial susceptibility assays following CLSI guidelines, biochemical tests, biofilm assays, and hydrophobicity assays. Additionally, gas chromatography mass spectrometry (GC–MS) and GC-Flame Ionization Detector (GC-FID) analysis were used for lipid profiling and composition. The clinically isolated resistant strains (MRSA-1418, ESBL-1384, and Acinetobacter 1379) demonstrated resistance phenotypes of 81.80%, 27.6%, and 63.6%, respectively, with a multiple antibiotic resistance index of 0.81, 0.27, and 0.63. Notably, the MRSA-1418 strain, which exhibited resistance, showed significantly higher levels of hemolysin, cell surface hydrophobicity, biofilm index, and a self-aggregative phenotype compared to the non-resistant strains. Gene expression analysis using quantitative real-time PCR (qPCR). Indicated elevated expression levels of intercellular adhesion biofilm-related genes (icaA, icaC, and icaD) in MRSA-1418 (pgaA, pgaC, and pgaB) and Acinetobacter 1379 after 24 h compared to non-resistant strains. Scanning electron microscopy (SEM) was employed for structural investigation. These findings provide valuable insights into the role of biofilms in antibiotic resistance and suggest potential target pathways for combating antibiotic-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Silva-Sanchez J, Reyna-Flores F, Velazquez-Meza ME, Rojas-Moreno T, Benitez-Diaz A, Sanchez-Perez A, Group S (2011) In vitro activity of tigecycline against extended-spectrum β-lactamase-producing Enterobacteriaceae and MRSA clinical isolates from Mexico: a multicentric study. Diagn Microbiol Infect Dis 70(2):270–273

    Article  CAS  PubMed  Google Scholar 

  2. Choi HJ, Jeong SH, Shin KS, Kim YA, Kim YR, Kim HS, Shin JH, Shin JH, Uh Y, Bae S, Yoon EJ (2022) Characteristics of escherichia coli urine isolates and risk factors for secondary bloodstream infections in patients with urinary tract infections. Microbiol Spectr 10(4):e01660-e1722

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chavadi M, Narasanna R, Chavan A, Oli AK (2018) Prevalence of methicillin resistant and virulence determinants in clinical isolates of Staphylococcus aureus. Open Forum Infect Dis 10:108–115. https://doi.org/10.2174/1874279301810010108

    Article  Google Scholar 

  4. Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ (1993) Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med 119(5):353–358

    Article  CAS  PubMed  Google Scholar 

  5. Asokan GV, Ramadhan T, Ahmed E, Sanad H (2019) WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J 34(3):184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M (2012) Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol 32(1):202–5

    Article  CAS  PubMed  Google Scholar 

  7. Ayyagari A, Bhargava A (2001) b-lactamases and their clinical significance (A mini review). Hosp Today 6(10):1–6

    Google Scholar 

  8. Sunenshine RH, Wright MO, Maragakis LL, Harris AD, Song X, Hebden J, Cosgrove SE, Anderson A, Carnell J, Jernigan DB, Kleinbaum DG (2007) Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 13(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  9. Awad E, Osman I, Sudan KB (2015) High prevalence of multidrug resistant Acinetobacter species in Khartoum Intensive Care Units (ICUs). Am J Res Commun 3(2):35–42

  10. Anitha M, Monisha DM, Mohamed AS, Pandurangan S (2016) Emergence and prevalence of A. baumannii in tertiary care hospital settings. Sch Acad J Biosci 4(4A):335–41

    Google Scholar 

  11. Mayasari E, Siregar C (2015) Prevalence of A. baumannii isolated from clinical specimens in adam malik hospital. Majalah Kedokteran Andalas 37(1):1–7

    Article  Google Scholar 

  12. Poorzargar P, Javadpour S, Karmostaji A (2017) Distribution and antibiogram pattern of Acinetobacter infections in Shahid Mohammadi hospital, Bandar Abbas, Iran. Bimonthly J Hormozgan Univ Med Sci 20(6):396–403

    Google Scholar 

  13. Bulens SN, Sarah HY, Walters MS, Jacob JT, Bower C, Reno J, Wilson L, Vaeth E, Bamberg W, Janelle SJ, Lynfield R (2018) Carbapenem-nonsusceptible A. baumannii, 8 US metropolitan areas, 2012–2015. Emerg Infect Dis 24(4):727

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yanagihara K, Araki N, Watanabe S, Kinebuchi T, Kaku M, Maesaki S, Yamaguchi K, Matsumoto T, Mikamo H, Takesue Y, Kadota JI (2012) Antimicrobial susceptibility and molecular characteristics of 857 methicillin-resistant Staphylococcus aureus isolates from 16 medical centers in Japan (2008–2009): nationwide survey of community-acquired and nosocomial MRSA. Diagn Microbiol Infect Dis 72(3):253–257

    Article  CAS  PubMed  Google Scholar 

  15. Tickler IA, Goering RV, Mediavilla JR, Kreiswirth BN, Tenover FC, HAI Consortium (2017) Continued expansion of USA300-like methicillin-resistant Staphylococcus aureus (MRSA) among hospitalized patients in the United States. Diagn Microbiol Infect Dis 88(4):342–7

    Article  PubMed  Google Scholar 

  16. Mutters NT, Bieber CP, Hauck C, Reiner G, Malek V, Frank U (2016) Comparison of livestock-associated and health care–associated MRSA—genes, virulence, and resistance. Diagn Microbiol Infect Dis 86(4):417–421

    Article  CAS  PubMed  Google Scholar 

  17. Neto ED, Guerrero J, Snyder RE, Pereira RF, de Freitas MD, Silva-Santana G, Riley LW, Aguiar-Alves F (2020) Genotypic distribution of Staphylococcus aureus colonizing children and adolescents in daycare centers, an outpatient clinic, and hospitals in a major Brazilian urban setting. Diagn Microbiol Infect Dis 97(3):115058

    Article  CAS  PubMed  Google Scholar 

  18. Papadimitriou-Olivgeris M, Portillo V, Kampouri EE, Nusbaumer C, Monnerat LB, Duplain H (2020) Impact of universal infectious diseases consultation on the management of Staphylococcus aureus bloodstream infection in a Swiss community hospital. Diagn Microbiol Infect Dis 97(1):115001

    Article  CAS  PubMed  Google Scholar 

  19. Götz F (2002) MicroReview Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  PubMed  Google Scholar 

  20. Chaieb K, Mahdouani K, Bakhrouf A (2005) Detection of icaA and icaD loci by polymerase chain reaction and biofilm formation by Staphylococcus epidermidis isolated from dialysate and needles in a dialysis unit. J Hosp Infect 61(3):225–230

    Article  CAS  PubMed  Google Scholar 

  21. Gerke C, Kraft A, Sußmuth R, Schweitzer O, Götz F (1998) Characterization of theN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidis Polysaccharide Intercellular Adhesin. J Biol Chem 273(29):18586–18593

    Article  CAS  PubMed  Google Scholar 

  22. Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279(52):54881–54886

    Article  CAS  PubMed  Google Scholar 

  23. Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S, Montanaro L (2006) Detection of biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence of ica genes with two classic phenotypic methods. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 76(2):425–30

    Google Scholar 

  24. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183(9):2888–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6(3):222–233

    Article  PubMed  Google Scholar 

  26. Cronan JE, Luk T (2022) Advances in the structural biology, mechanism, and physiology of cyclopropane fatty acid modifications of bacterial membranes. Microbiol Mol Biol Rev 86(2):e00013-22

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bauer AW, Kirby WM (1996) Disc diffusion assay. Am J Clin Pathol 45:491–496

    Google Scholar 

  28. Vanstokstraeten R, Belasri N, Demuyser T, Crombé F, Barbé K, Piérard D (2021) A comparison of E. coli susceptibility for amoxicillin/clavulanic acid according to EUCAST and CLSI guidelines. Eur J Clin Microbiol Infect Dis 40(11):2371–7

    Article  CAS  PubMed  Google Scholar 

  29. Bosshard PP, Abels S, Zbinden R, Bottger EC, Altwegg M (2003) Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol 41(9):4134–4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74(7):4164–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gowrishankar S, Kamaladevi A, Balamurugan K, Pandian SK (2016) In vitro and in vivo biofilm characterization of methicillin-resistant Staphylococcus aureus from patients associated with pharyngitis infection. Biomed Res Int 2016:1289157

  32. Lee HY, Zou Y, Ahn J (2013) Physiochemical and molecular properties of antimicrobial-exposed Staphylococcus aureus during the planktonic-to-biofilm transition. Ann Microbiol 63:1213–1217

    Article  CAS  Google Scholar 

  33. Mező E, Hartmann-Balogh F, Madarászné Horváth I, Bufa A, Marosvölgyi T, Kocsis B, Makszin L (2022) Effect of culture conditions on fatty acid profiles of bacteria and lipopolysaccharides of the genus Pseudomonas—GC-MS analysis on ionic liquid-based column. Molecules 27(20):6930

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8):891–899

    Article  PubMed  Google Scholar 

  35. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ (2016) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 18:gkw937

    Google Scholar 

  36. Kumari N, Mohapatra TM, Singh YI (2008) Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in a tertiary-care hospital in Eastern Nepal. J Nepal Med Assoc 47(170):53–56

    Article  CAS  Google Scholar 

  37. Tamang K, Shrestha P, Koirala A, Khadka J, Gautam N, Rijal KR (2018) Prevalence of bacterial uropathogens among diabetic patients attending padma nursing hospital of Western Nepal

  38. Klein RD, Hultgren SJ (2020) Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol 18(4):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Pilato V, Ceccherini F, Sennati S, D’Agostino F, Arena F, D’Atanasio N, Di Giorgio FP, Tongiani S, Pallecchi L, Rossolini GM (2020) In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times. Diagn Microbiol Infect Dis 96(2):114901

    Article  PubMed  Google Scholar 

  40. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436

    Article  CAS  PubMed  Google Scholar 

  41. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416(6882):740–743

    Article  CAS  PubMed  Google Scholar 

  42. Melgar-Lalanne G, Rivera-Espinoza Y, Téllez-Medina DI, Hernández-Sánchez H (2015) Cell surface properties of halotolerant probiotic lactobacilli. J Adv Biotechnol 4(3):404–413

    Google Scholar 

  43. Wright NE, Gilbert P (1987) Influence of specific growth rate and nutrient-limitation upon the sensitivity of Escherichia coli towards polymyxin B. J Antimicrob Chemother 20(3):303–312

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Chikindas ML, Ludescher RD, Montville TJ (2002) Temperature-and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms. Appl Environ Microbiol 68(12):5904–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumariya R, Sood SK, Rajput YS, Garsa AK (2015) Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression. Ann Microbiol 65:721–732

    Article  CAS  Google Scholar 

  46. Trunk T, Khalil HS, Leo JC (2018) Bacterial autoaggregation. AIMS Microbiol 4(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7):529–536

    Article  CAS  PubMed  Google Scholar 

  48. Dufour M, Manson JM, Bremer PJ, Dufour JP, Cook GM, Simmonds RS (2007) Characterization of monolaurin resistance in Enterococcus faecalis. Appl Environ Microbiol 73(17):5507–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loughlin MF, Jones MV, Lambert PA (2002) Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother 49(4):631–639

    Article  CAS  PubMed  Google Scholar 

  50. To MS, Favrin S, Romanova N, Griffiths MW (2002) Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl Environ Microbiol 68(11):5258–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10(4):179–186

    Article  CAS  PubMed  Google Scholar 

  52. Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28(1):41–50

    Article  Google Scholar 

  53. Kaneda TO (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55(2):288–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52(2):149–182

    Article  CAS  PubMed  Google Scholar 

  55. Mykytczuk NC, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95(1–3):60–82

    Article  CAS  PubMed  Google Scholar 

  56. Shinitzky M, Barenholz Y (1974) Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem 249(8):2652–2657

    Article  CAS  PubMed  Google Scholar 

  57. Mirani ZA, Jamil N (2013) Effect of vancomycin on the cytoplasmic membrane fatty acid profile of vancomycin-resistant and-susceptible isolates of Staphylococcus aureus. J Infect Chemother 19(1):24–33

    Article  CAS  PubMed  Google Scholar 

  58. Boudjemaa R, Cabriel C, Dubois-Brissonnet F, Bourg N, Dupuis G, Gruss A, Lévêque-Fort S, Briandet R, Fontaine-Aupart MP, Steenkeste K (2018) Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus. Antimicrob Agents Chemother 62(7):e00023-e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jung D, Powers JP, Straus SK, Hancock RE (2008) Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys Lipid 154(2):120–128

    Article  CAS  Google Scholar 

  60. Atshan SS, Shamsudin MN, Karunanidhi A, van Belkum A, Lung LT, Sekawi Z, Nathan JJ, Ling KH, Seng JS, Ali AM, Abduljaleel SA (2013) Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). Infect Genet Evol 1(18):106–112

    Article  Google Scholar 

  61. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13(1):20–26

    Article  CAS  PubMed  Google Scholar 

  63. Lannan FM, O’conor DK, Broderick JC, Tate JF, Scoggin JT, Moran NA, Husson CM, Hegeman EM, Ogrydziak CE, Singh SA, Vafides AG (2016) Evaluation of virulence gene expression patterns in Acinetobacter baumannii using quantitative real-time polymerase chain reaction array. Mil Med 181(9):1108–1113

    Article  PubMed  Google Scholar 

  64. Al-Haqan A, Boswihi SS, Pathan S, Udo EE (2020) Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates. PLoS One 15(8):e0236713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the financial support from the National Dairy Research Institute, Karnal, and Haryana, India.

Funding

No source of funding.

Author information

Authors and Affiliations

Authors

Contributions

DI: methodology, data creation, conceptualization and data validation. MSS: data validation, writing. SM: writing methodology. AKP: discussion and writing, review & editing. SV: conceptualization, supervision, editing, project administration.

Corresponding author

Correspondence to Shilpa Vij.

Ethics declarations

Ethics declarations

This study was approved by the Institute Biosafety Committee (IBSC) (No. 11–2021/IRC D-61).

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Roxane M Piazza

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1947 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iram, D., Sansi, M.S., Puniya, A.K. et al. Phenotypic and molecular characterization of clinically isolated antibiotics-resistant S. aureus (MRSA), E. coli (ESBL) and Acinetobacter 1379 bacterial strains. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01347-5

Keywords

Navigation