Log in

Antifungal activity of a trypsin inhibitor from Salvia hispanica L. (chia) seeds against fluconazole-resistant strains of Candida spp. and evaluation of its toxicity in vitro

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The incidence of Candida species resistant to traditional antifungal drugs is increasing globally. This issue significantly impacts patients' lives and increases healthcare expenses, confirming the need to develop novel therapeutic strategies. Recently, a thermostable trypsin inhibitor named ShTI (11.558 kDa), which has antibacterial effects on Staphylococcus aureus, was isolated from Salvia hispanica L. (chia) seeds. This study aimed to assess the antifungal effect of ShTI against Candida species and its synergism with fluconazole and to evaluate its mode of action. Preliminary toxicological studies on mouse fibroblasts were also performed. ShTI exhibited antifungal effects against C. parapsilosis (ATCC® 22,019), C. krusei (ATCC® 6258), and six clinical fluconazole-resistant strains of C. albicans (2), C. parapsilosis (2), and C. tropicalis (2). The minimum inhibitory concentration (MIC) values were 4.1 µM (inhibiting 50% of the isolates) and 8.2 µM (inhibiting 100% of the isolates). Additionally, when combined with fluconazole, ShTI had a synergistic effect on C. albicans, altering the morphological structure of the yeast. The mode of action of ShTI against C. krusei (ATCC® 6258) and C. albicans involves cell membrane permeabilization, the overproduction of reactive oxygen species, the formation of pseudohyphae, pore formation, and consequently, cell death. In addition, ShTI (8.65 and 17.3 µM) had noncytotoxic and nongenotoxic effects on L929 mouse fibroblasts. These findings suggest that ShTI could be a promising antimicrobial candidate, but further research is necessary to advance its application as a novel antifungal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multii-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 3:57. https://doi.org/10.3390/jof3040057

    Article  PubMed  Google Scholar 

  2. Muzaheed Alshery BA, Al Rabaan, El-Masry OS, Acharya S, Alzahrani FM, Mutair AA, Alhumaid S, Ja Al-Tawfiq, Muhammad J, Khan A, Dhama K, Al-Omari A (2022) A 20-year retrospective clinical analysis of Candida infections in tertiary center: Single-center experience. J Infect Public Health 15:69–74. https://doi.org/10.1016/j.jiph.2021.11.014

    Article  CAS  PubMed  Google Scholar 

  3. Costa-De-Oliveira S, Rodrigues AG (2020) Candida albicans antifungal resistance and tolerance in bloodstream infections: The Triad Yeast-Host-Antifungal. Microorganisms 8:1–15. https://doi.org/10.3390/microorganisms8020154

    Article  CAS  Google Scholar 

  4. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25:792–798. https://doi.org/10.1016/j.cmi.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  5. Gutierrez-Gongorra D, Geddes-McAlister J (2021) From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi 7:1016. https://doi.org/10.3390/jof7121016

    Article  CAS  Google Scholar 

  6. Ryan C (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–49. https://doi.org/10.1146/annurev.py.28.090190.002233

    Article  CAS  Google Scholar 

  7. Hellinger R, Gruber CW (2019) Peptide-based protease inhibitors from plants. Drug Discov Today 24:1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motyka S, Koc K, Ekiert H, Blicharska E, Czarnek K, Szopa A (2022) The Current State of Knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules 27(4):1207. https://doi.org/10.3390/molecules27041207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Souza AA, Lima AM, Sousa DOB, Nogueira FC, Neto JCS, Dias LP, Araujo NMS, Nagano CS, Junior HVN, Silva CR, Sá LGAV, Neto JBA, Barroso FDD, Moraes MEA; Oliveira HD (2022) Chia (Salvia hispanica L.) seeds contain a highly stable trypsin inhibitor with potential for bacterial management alone or in drug combination therapy with oxacillin. Probiotics Antimicrob. Proteins https://doi.org/10.1007/s12602-022-09979-5

  10. Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–78. https://doi.org/10.1016/0003-9861(61)90145-X

    Article  CAS  PubMed  Google Scholar 

  11. Schägger H, Von JG (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–79. https://doi.org/10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  13. Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. CLSI document M27-A3. Clinical and Laboratory Standards Institute. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898

  14. Regente M, Gb Taveira, Pinedo M, Elizalde MM, Ticchi AJ, Diz MSS, Carvalho AO, De La Canal L, Gomes VM (2014) A sunflower lectin with antifungal properties and putative medical mycology applications. Curr Microbiol 69:88–95. https://doi.org/10.1007/s00284-014-0558-z

    Article  CAS  PubMed  Google Scholar 

  15. Maurya IK, Pathak S, Sharma M, Sanwal H, Chaudhary P, Tupe S, Deshpande M, Chauhan VS, Prasad R (2011) Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 32:1732–1740. https://doi.org/10.1016/j.peptides.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1):1. https://doi.org/10.1093/jac/dkg301

    Article  PubMed  Google Scholar 

  17. Staniszewska M, Bondaryk M, Swoboda-Kopec E, Siennicka K, Sygitowicz G, Kurzatkowski W (2013) Candida albicans morphologies revealed by scanning electron microscopy analysis. Braz J Microbiol 44:813–21. https://doi.org/10.1590/S1517-83822013005000056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol 16:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  19. Mcgahon AJ, Martin SM, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol 46:153–85. https://doi.org/10.1016/s0091-679x(08)61929-9

    Article  CAS  PubMed  Google Scholar 

  20. Singh NP, Mccoy MT, Tice RR, Scheider EL (1998) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–91. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  Google Scholar 

  21. Hartmann A, Speit G (1997) The contribution of cytotoxicity to DNA effects in the single cell gel test (comet assay). Toxicol Lett 90:183–88. https://doi.org/10.1016/s03784274(96)03847-7

    Article  CAS  PubMed  Google Scholar 

  22. Rawlings ND (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92:1463–83. https://doi.org/10.1016/j.biochi.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  23. Dabhade AR, Mokashe NU, Patil UK (2016) Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia amara Boiv. Process Biochem 51:659–74. https://doi.org/10.1016/j.procbio.2016.02.015

    Article  CAS  Google Scholar 

  24. Kim MH, Park SC, Kim JY, Lee SY, Lim HT, Cheong H, Hahm KS, Park Y (2006) Purification, and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley.” Biochem Biophys Res Commun 346:681–86. https://doi.org/10.1016/j.bbrc.2006.05.186

    Article  CAS  PubMed  Google Scholar 

  25. Gómez-Gaviria M, Mora-Montes HM (2020) Current Aspects in the Biology, Pathogeny, and treatment of Candida krusei, a Neglected Fungal Pathogen. Infect Drug Resist 13:1673–89. https://doi.org/10.2147/IDR.S247944

    Article  PubMed  PubMed Central  Google Scholar 

  26. Araújo NMS, Dias LP, Costa HPS, Sousa DOB, Vasconcelos IM, Morais GAde, Oliveira JTA (2019) ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. BBA - Biomembranes 1861:1830–32. https://doi.org/10.1016/j.bbamem.2019.183032

    Article  CAS  Google Scholar 

  27. Dib HX, Oliveira DGL, Oliveira CFR, Taveira GB, Mello EO, Verbisk NV, Chang MR, Junior DC, Gomes VM, Macedo MLR (2018) Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp. Arch Microbiol 201:223–33. https://doi.org/10.1007/s00203-018-1598-8

    Article  CAS  PubMed  Google Scholar 

  28. Oliveira CFR, Oliveira CT, Taveira GB, Mell EC, Gomes VM, Macedo MLR (2018) Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species. Int J Biol Macromol 119:645–53. https://doi.org/10.1016/j.ijbiomac.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  29. Bhattacharya S, Sae-Tia S, Fries BC (2020) Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 9:312. https://doi.org/10.3390/antibiotics9060312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ksiezopolska E, Gabaldón T (2018) Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes 9:461. https://doi.org/10.3390/genes9090461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi H, Lee D (2014) Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans. Biochimie 105:58–63. https://doi.org/10.1016/j.biochi.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  32. Souto XM, Ramos LS, Oliveira SSC, Branquinha MH, Santos ALS (2021) The serine peptidase inhibitor N-r-tosyl-L-phenylalanine chloromethyl ketone (TPCK) affects the cell biology of Candida haemulonii species complex. Fungal Biology 125:378–388. https://doi.org/10.1016/j.funbio.2020.12.004

    Article  CAS  PubMed  Google Scholar 

  33. Dhingra S, Cramer RA (2017) Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: opportunities for therapeutic development. Front Microbiol 8:92. https://doi.org/10.3389/fmicb.2017.00092

    Article  PubMed  PubMed Central  Google Scholar 

  34. Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM (2016) BMC Microbiol 16:12. https://doi.org/10.1186/s12866-016-0626-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sardi JDCO, Pitangui NDS, Rodriguez-Arellanes G, Taylor ML, Fusco-Almeida AM, Mendes-Giannini MJ (2014) Highlights in pathogenic fungal biofilms. Rev Iberoam De Micol 31:22–29. https://doi.org/10.1016/j.riam.2013.09.014

    Article  Google Scholar 

  36. Cuéllar-Cruz M, Villagómez-Castro J, Ruiz-Baca E (2012) Candida species: new insights into biofilm formation. Future Microbiol 7:755–71. https://doi.org/10.2217/fmb.12.48

    Article  CAS  PubMed  Google Scholar 

  37. Morais JKS, Bader O, Weig M, Oliveira JTA, Arantes MR, Gomes VM, Cunha M, Oliveira HD, Sousa DOB, Lourencao AL, Vasconselos IM (2013) Soybean Toxin (SBTX) Impairs Fungal Growth by Interfering with Molecular Transport, Carbohydrate/ Amino Acid Metabolism and Drug/Stress Responses. Plos one 8: 70425 https://doi.org/10.1371/journal.pone.0070425

  38. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K (2018) Candida albicans Biology, molecular characterization, pathogenicity, and advances in diagnosis and control An update Author links open overlay panel. Microb Pathog 117:128–138. https://doi.org/10.1016/j.micpath.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  39. Melo IRS, Dias LP, Araújo NMS, Vasconcelos IM, Martins TF, Morais GA, Gonçalves JFC, Nagano CS, Carneiro RF, Oliveira JTA (2019) ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida. Int J Biol Macromol 135:1115–24. https://doi.org/10.1016/j.ijbiomac.2019.04.174

    Article  CAS  Google Scholar 

  40. Souza LAL, Dias LP, Araújo NMS, Carneiro RF, Nagano CS, Teixeira CS, Silva RGG, Oliveira JTA, Sousa DOB (2022) JcTI-PepI, a synthetic peptide bioinspired in the trypsin inhibitor from Jatropha curcas, presents potent inhibitory activity against C. krusei, a neglected pathogen. Biochimie 200:107–18. https://doi.org/10.1016/j.biochi.2022.05.014

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira CFR, Oliveira CT, Taveira GB, Mello EO, Gomes VM, Macedo MLR (2018) Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species. Int J Biol Macromol 119:645–53. https://doi.org/10.1016/j.ijbiomac.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  42. Berkow EL, Lockhart SR (2017) Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 10:237–45. https://doi.org/10.2147/IDR.S118892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A (2020) History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 104:104240. https://doi.org/10.1016/j.bioorg.2020.104240

    Article  CAS  PubMed  Google Scholar 

  44. Morio F, Jensen RH, Le Pape P, Arendrup MC (2017) Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents 50:599–606. https://doi.org/10.1016/j.ijantimicag.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  45. Wang T, Pan M, **ao N, Wu J, Wang Q, Cheng T, Yan G, Wu D, Li N, Shao J (2021) In vitro and in vivo analysis of monotherapy and dual therapy with ethyl caffeate and fluconazole on virulence factors of Candida albicans and systemic candidiasis. J Glob Antimicrob Resist 27:253–266. https://doi.org/10.1016/j.jgar.2021.10.005

    Article  CAS  PubMed  Google Scholar 

  46. Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, Ferreira RC, Melo ASA, Briones MRS, Colombo AL (2015) Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infect Dis 15:57. https://doi.org/10.1186/s12879-015-0793-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Burchacka E, Pietra P, Lupicka-Slowik A (2022) Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 146:112523. https://doi.org/10.1016/j.biopha.2021.112523

    Article  CAS  PubMed  Google Scholar 

  48. Curvelo JADR, Barreto ALS, Portela MB, Alviano DS, Hollandino C, Souto-Padron T, Soares RMDA (2014) Effect of the secretory leucocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: A therapeutic alternative? Arco. Oral Biol 59:928–37. https://doi.org/10.1016/j.archoralbio.2014.05.007

    Article  CAS  Google Scholar 

  49. Zhao J, Kah YEE (2019) Protease Inhibitors. Food Chem, 1st ed. 253–59; https://doi.org/10.1016/B978-0-08-100596-5.21749-6

  50. Srikanth S, Chen Z (2016) Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 7:470. https://doi.org/10.3389/fphar.2016.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mas AL, Brigante FI, Salvucci E, Pigni NB, Martinez ML, Ribotta P, Wunderlin DA, Baroni MV (2020) Defatted Chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chemistry 316:126–279. https://doi.org/10.1016/j.foodchem.2020.126279

    Article  CAS  Google Scholar 

  52. Grancieri M, Martino HSD, Mejia EG (2021) Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients 13:176. https://doi.org/10.3390/nu13010176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turck D, Castenmiller J, Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A et al (2019) Safety of Chia seeds (Salvia hispanica L.) as a novel food for extended uses pursuant to Regulation (EU) 2015/2283. EFSA Journal 17:5657. https://doi.org/10.2903/j.efsa.2019.5716

    Article  CAS  Google Scholar 

  54. Hrncic MK, Iavanovski M, Cor D, Knez Z (2020) Chia Seeds (Salvia Hispanica L): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 18(11):10. https://doi.org/10.3390/molecules25010011

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Brazilian institution CAPES (Coordination for the Improvement of Higher Education Personnel) for the grant (scholarship) and the Drug Research and Development Center—Federal University of Ceará (NPDM-UFC) for the infrastructure and support. The authors would like to thank the Central Analítica-UFC/CT-INFRA/MCTI-SISANO/Pró-Equipamentos CAPES for analysis by scanning electron microscopy (SEM). The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Francisca Cristiane Nogueira: conceptualization, methodology design, validation, investigation, data curation, formal analysis, writing—original draft and writing—review and editing. Adson Ávila de Souza: investigation and writing—review and editing. Nadine Monteiro Salgueiro Araújo: investigation and formal analysis. Larissa Alves Lopes de Souza: investigation. Rafael Guimarães Gomes Silva: investigation. Daniele de Oliveira Bezerra de Sousa: methodology design, validation, investigation, formal analysis from antifungal assays. Bruno Cêlho Calvalcanti: methodology design, validation, investigation, data curation, formal analysis from toxicology assays. Manoel Odorico de Moraes Filho: methodology design, validation, investigation, data curation, formal analysis from toxicology assays. Lívia Gurgel do Amaral Valente Sá: investigation and formal analysis from antifungal assays. Hélio Vitoriano Nobre Júnior: methodology design, investigation, formal analysis from antifungal assays. Hermógenes David de Oliveira: conceptualization, formal analysis, data curation, supervision, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Hermógenes David de Oliveira.

Ethics declarations

Competing Interests

We wish to confirm that there are no known conflicts of interest associated with this publication and that there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Communicated by Responsible Editor: Luiz Henrique Rosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, F.C., de Souza, A.Á., Araújo, N.M.S. et al. Antifungal activity of a trypsin inhibitor from Salvia hispanica L. (chia) seeds against fluconazole-resistant strains of Candida spp. and evaluation of its toxicity in vitro. Braz J Microbiol 55, 1205–1217 (2024). https://doi.org/10.1007/s42770-024-01337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-024-01337-7

Keywords

Navigation