Log in

Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s−1, and Kcat/Km 0.0015 ± 0.000001 µM−1 s−1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors agreed to the availability of data to ensure data transparency norms.

Code availability

Not applicable.

Abbreviations

TB:

Tuberculosis

M. tuberculosis :

Mycobacterium tuberculosis H37Rv

MDR-TB:

Multidrug-resistant TB

GTPases:

Guanosine triphosphatases

G-proteins:

GTP-binding proteins

SRP:

Signal recognition particle

PDB:

Protein Data Bank

RBC:

Real Biotech Corporation

LB agar:

Luria Bertani agar

LB broth:

Luria Bertani broth

IPTG:

Isopropyl β thiogalactoside

EDTA:

Ethylene diamine tetra-acetate

PBS:

Phosphate buffer saline

PMSF:

Phenylmethylsulphonyl fluoride

SDS PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

GST Resin:

Glutathione HiCap matrix

GEF:

Guanine nucleotide exchange factors

GAP:

GTPase-activating proteins

GDP:

Guanosine diphosphate

PCR:

Polymerase chain reaction

CD:

Circular dichoirism

UDP:

Uridine diphosphate

UTP:

Uridine triphosphate

CDP:

Cytidine diphosphate

CTP:

Cytidine triphosphate

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

Mt-PhoH2:

Mycobacterial PhoH2

References

  1. Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16(4):202–213. https://doi.org/10.1038/nrmicro.2018.8

    Article  CAS  PubMed  Google Scholar 

  2. Meena LS, Rajni (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 277(11):2416–27. https://doi.org/10.1111/j.1742-4658.2010.07666.x

    Article  CAS  PubMed  Google Scholar 

  3. Shivangi MLS (2018) A novel approach in treatment of tuberculosis by targeting drugs to infected macrophages using biodegradable nanoparticles. Appl Biochem Biotechnol 185(3):815–821. https://doi.org/10.1007/s12010-018-2695-5

    Article  CAS  PubMed  Google Scholar 

  4. Rifat D, Bishai WR, Karakousis PC (2009) Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis 200(7):1126–1135. https://doi.org/10.1086/605700

    Article  CAS  PubMed  Google Scholar 

  5. Ulrichs T, Kaufmann SH (2002) Mycobacterial persistence and immunity. Front Biosci 7:d458–d469

    Article  CAS  PubMed  Google Scholar 

  6. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102(23):8327–8332. https://doi.org/10.1073/pnas.0503272102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32(3):461–473. https://doi.org/10.1111/j.1574-6976.2008.00101.x

    Article  CAS  PubMed  Google Scholar 

  8. Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125. https://doi.org/10.1146/annurev.biochem.68.1.89

    Article  CAS  PubMed  Google Scholar 

  9. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, Rodrigue S, Basu J, Kundu M (2007) Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65(2):261–276. https://doi.org/10.1111/j.1365-2958.2007.05814.x

    Article  CAS  PubMed  Google Scholar 

  10. Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. https://doi.org/10.3389/fmicb.2015.00402

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wanner BL, Chang BD (1987) The phoBR operon in Escherichia coli K-12. J Bacteriol 169(12):5569–5574. https://doi.org/10.1128/jb.169.12.5569-5574.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J, Virolle MJ (2006) Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 188(17):6269–6276. https://doi.org/10.1128/JB.00202-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghorbel S, Kormanec J, Artus A, Virolle MJ (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188(2):677–686. https://doi.org/10.1128/JB.188.2.677-686.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tommassen J, de Geus P, Lugtenberg B, Hackett J, Reeves P (1982) Regulation of the pho regulon of Escherichia coli K-12. Cloning of the regulatory genes phoB and phoR and identification of their gene products. J Mol Biol. 157(2):265–74. https://doi.org/10.1016/0022-2836(82)90233-9

    Article  CAS  PubMed  Google Scholar 

  15. Hulett FM (1996) The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol 19(5):933–939. https://doi.org/10.1046/j.1365-2958.1996.421953.x

    Article  CAS  PubMed  Google Scholar 

  16. Novak R, Cauwels A, Charpentier E, Tuomanen E (1999) Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. J Bacteriol 181(4):1126–1133. https://doi.org/10.1128/JB.181.4.1126-1133.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188(2):724–732. https://doi.org/10.1128/JB.188.2.724-732.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wösten MM, Parker CT, van Mourik A, Guilhabert MR, van Dijk L, van Putten JP (2006) The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol Microbiol 62(1):278–291. https://doi.org/10.1111/j.1365-2958.2006.05372.x

    Article  CAS  PubMed  Google Scholar 

  19. Juntarajumnong W, Hirani TA, Simpson JM, Incharoensakdi A, Eaton-Rye JJ (2007) Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system. Arch Microbiol. 188(4):389–402. https://doi.org/10.1007/s00203-007-0259-0

    Article  CAS  PubMed  Google Scholar 

  20. Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR Jr (2007) The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 189(15):5495–5503. https://doi.org/10.1128/JB.00190-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalo-Asensio J, Soto CY, Arbués A, Sancho J, del Carmen MM, García MJ, Gicquel B, Martín C (2008) The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J Bacteriol 190(21):7068–7078. https://doi.org/10.1128/JB.00712-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, Stein R, Jeon BY, Kwak JY, Song MK, Patron JP, Jorg S, Roh K, Cho SN, Kaufmann SH (2008) Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe 3(2):97–103. https://doi.org/10.1016/j.chom.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Andrews ES, Arcus VL (2015) The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb) 95(4):385–394. https://doi.org/10.1016/j.tube.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  24. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268. https://doi.org/10.1093/nar/gkz991

    Article  CAS  PubMed  Google Scholar 

  25. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed  Google Scholar 

  26. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317(1):41–72. https://doi.org/10.1006/jmbi.2001.5378

    Article  CAS  PubMed  Google Scholar 

  27. White DW, Elliott SR, Odean E, Bemis LT, Tischler AD (2018) Mycobacterium tuberculosis Pst/SenX3-RegX3 regulates membrane vesicle production independently of ESX-5 activity. mBio 9(3):e00778-18. https://doi.org/10.1128/mBio.00778-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shivangi EMK, Meena LS (2021) Essential biochemical, biophysical and computational inputs on efficient functioning of Mycobacterium tuberculosis H37Rv FtsY. Int J Biol Macromol 171:59–73. https://doi.org/10.1016/j.ijbiomac.2020.12.182

    Article  CAS  PubMed  Google Scholar 

  29. MeenaRajni LS (2011) Cloning and characterization of engA, a GTP-binding protein from Mycobacterium tuberculosis H37Rv. Biologicals 39(2):94–99. https://doi.org/10.1016/j.biologicals.2011.01.005

    Article  CAS  Google Scholar 

  30. Yang JT, Wu CS, Martinez HM (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol 130:208–269. https://doi.org/10.1016/0076-6879(86)30013-2

    Article  CAS  PubMed  Google Scholar 

  31. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chandolia A, Rathor N, Sharma M, Saini NK, Sinha R, Malhotra P, Brahmachari V, Bose M (2014) Functional analysis of mce4A gene of Mycobacterium tuberculosis H37Rv using antisense approach. Microbiol Res 169(9–10):780–787. https://doi.org/10.1016/j.micres.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  33. Parish T, Roberts DM (eds) (2015) Mycobacteria protocols, methods in molecular biology, vol. 1285. https://doi.org/10.1007/978-1-4939-2450-9_7. © Springer Science+Business Media, New York

  34. Shivangi BMA, Meena LS (2019) Mutational effects on structural stability of SRP pathway dependent cotranslational protein ftsY of Mycobacterium tuberculosis H37Rv. Gen Rep 15:100395

    Google Scholar 

  35. Beg MA, Shivangi TSC, Meena LS (2018) Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Adv Bioinformatics 15:6152014. https://doi.org/10.1155/2018/6152014

    Article  CAS  Google Scholar 

  36. Beg MA, Shivangi TSC, Meena LS (2019) Systematical analysis to assist the significance of Rv1907c gene with the pathogenic potentials of Mycobacterium tuberculosis H37Rv. J Biotechnol Biomater 8:286. https://doi.org/10.4172/2155-952X.1000286

    Article  Google Scholar 

  37. Beg MA, Shivangi AF, Meena LS (2018) Structural and functional annotation of Rv1514c gene of Mycobacterium tuberculosis H37Rv as glycosyl transferases. J Adv Res Biotech 3(2):1–9

    Article  Google Scholar 

  38. Hassan NM, Alhossary AA, Mu Y, Kwoh CK (2017) Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Sci Rep 7(1):15451. https://doi.org/10.1038/s41598-017-15571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shivangi, Meena LS (2020) To target the PI3-Kinase pathway of Mycobacterium tuberculosis H37Rv phagosome by heavy metal ions. Res Rev J Microbiol Biotechnol 8:3

    Google Scholar 

  41. Shivangi, Kevlani N, Meena LS (2020) Distinctive features of microvesicles as a transporter of GTP and iron to empower pathogenesis of Mycobacterium tuberculosis H37Rv. Emerg Infect Dis Diag J EIDDJ-100009

  42. Agarwal N, Pareek M, Thakur P, Pathak V (2012) Functional characterization of EngA(MS), a P-loop GTPase of Mycobacterium smegmatis. PLoS ONE 7(4):e34571. https://doi.org/10.1371/journal.pone.0034571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leonard M, Song BD, Ramachandran R, Schmid SL (2005) Robust colorimetric assays for dynamin’s basal and stimulated GTPase activities. Methods Enzymol 404:490–503. https://doi.org/10.1016/S0076-6879(05)04043-7

    Article  CAS  PubMed  Google Scholar 

  44. León-Torres A, Arango E, Castillo E, Soto CY (2020) CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biol Res 53(1):6. https://doi.org/10.1186/s40659-020-00274-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM (2014) Differential roles for the Co(2+) /Ni(2+) transporting ATPases, CtpD and CtpJ, Mycobacterium tuberculosis virulence. Mol Microbiol 91(1):185–197. https://doi.org/10.1111/mmi.12454

    Article  CAS  PubMed  Google Scholar 

  46. Sheen P, Ferrer P, Gilman RH, Christiansen G, Moreno-Román P, Gutiérrez AH, Sotelo J, Evangelista W, Fuentes P, Rueda D, Flores M, Olivera P, Solis J, Pesaresi A, Lamba D, Zimic M (2012) Role of metal ions on the activity of Mycobacterium tuberculosis pyrazinamidase. Am J Trop Med Hyg 87(1):153–161. https://doi.org/10.4269/ajtmh.2012.10-0565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao X, Du Z, Patel TB (2005) Copper and zinc inhibit Galphas function: a nucleotide-free state of Galphas induced by Cu2+ and Zn2+. J Biol Chem 280(4):2579–2586. https://doi.org/10.1074/jbc.M409791200

    Article  CAS  PubMed  Google Scholar 

  48. Gao X, Du Z, Patel TB (2005) Copper and zinc inhibit Galphas function: a nucleotide-free state of Galphas induced by Cu2+ and Zn2+. J Biol Chem 280(4):2579–2586. https://doi.org/10.1074/jbc.M409791200

    Article  CAS  PubMed  Google Scholar 

  49. Noble S, Nibert ML (1997) Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. J Virol 71(3):2182–2191. https://doi.org/10.1128/JVI.71.3.2182-2191.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Daniel J, Abraham L, Martin A, Pablo X, Reyes S (2018) Rv2477c is an antibiotic-sensitive manganese-dependent ABC-F ATPase in Mycobacterium tuberculosis. Biochem Biophys Res Commun 495(1):35–40. https://doi.org/10.1016/j.bbrc.2017.10.168

    Article  CAS  PubMed  Google Scholar 

  51. Bharat A, Blanchard JE, Brown ED (2013) A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis. J Biomol Screen 18(7):830–836. https://doi.org/10.1177/1087057113486001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shivangi, Beg MA, Meena LS (2018) Insights of Rv2921c (FtsY) Gene of Mycobacterium tuberculosis H37Rv to prove its significance by computational approach. BJSTR 12(2). https://doi.org/10.26717/BJSTR.2018.12.002231

  53. Beg MA, Shivangi AF, Meena LS (2019) Significant aspect of Rv0378 gene of Mycobacterium tuberculosis H37Rv reveals the PE_PGRS like properties by computational approaches. J Biotechnol Biomed 2:024–039

    Google Scholar 

  54. Rajni MLS (2010) Guanosine triphosphatases as novel therapeutic targets in tuberculosis. Int J Infect Dis 14(8):e682–e687. https://doi.org/10.1016/j.ijid.2009.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mary K. Ekka, CSIR-IGIB, for kindly providing inputs to the manuscript. They also acknowledge the research facilities provided by CSIR-IGIB.

Funding

The work is supported by Department of Science and Technology-SERB, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, under the research project GAP0145 (SERB-DST Grant no: EEQ/2016/000514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman S. Meena.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors agree to participate.

Consent for publication

The authors agree with all terms and conditions.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Pavan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivangi, Khan, Y., Ekka, M.K. et al. Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity. Braz J Microbiol 55, 1033–1051 (2024). https://doi.org/10.1007/s42770-024-01267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-024-01267-4

Keywords

Navigation