Log in

Essential oils on the control of fungi causing postharvest diseases in mango

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The use of fungicides in the postharvest treatment of mangoes has been widespread due to the incidence of pathogens, but awareness of the health risks arising from their use has increased, driving the search for more sustainable treatments. This study aimed to evaluate the activity of antifungal treatment of seven essential oils (EO) against four fungi that cause postharvest diseases in mangoes and define the minimum inhibitory concentration (MIC) and chemical composition, analyzed by gas chromatography (GC-MS). The results showed that the EOs of oregano, rosemary pepper, cinnamon bark, and clove inhibited 100% of the mycelial growth of the studied pathogens, with MIC ranging from 250 to 2000 μL.L−1. The main compound found in oregano was carvacrol (69.1%); in rosemary and pepper oil, it was thymol (77.2%); cinnamaldehyde (85.1%) was the main constituent of cinnamon bark, and the eugenol (84.84%) in cloves. When evaluating the antifungal activity of these compounds, thymol and carvacrol showed greater inhibitory activity against fungi. Therefore, this study showed the great potential of oregano, clove, rosemary pepper, and cinnamon bark essential oil as alternative treatments to synthetic fungicides in controlling postharvest diseases in mangoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1  
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Mirza B, Croley CR, Ahmad M, Pumarol J, Das N, Sethi G, Bishayee A (2021) Mango (Mangifera indica L.): a magnificent plant with cancer preventive and anticancer therapeutic potential. Crit Rev Food Sci Nutr 61:2125–2151. https://doi.org/10.1080/10408398.2020.1771678

    Article  CAS  PubMed  Google Scholar 

  2. Brazilian Horti & Fruit Yearbook (2022) Editora Gazeta. Disponível em: <https://www.editoragazeta.com.br/produto/anuario-brasileiro-de-horti-fruti-2022/>. Acesso em: 8 jan. 2023

  3. Zhang Y, Gao Z, Hu M, Pan Y, Xu X, Zhang Z (2022) Delay of ripening and senescence in mango fruit by 6-benzylaminopurine is associated with inhibition of ethylene biosynthesis and membrane lipid catabolism. Postharvest Biol Technol 185:111797

    Article  CAS  Google Scholar 

  4. da Costa Gonçalves D, Ribeiro WR, Goncalves DC, Menini L, Costa H (2021) Recent advances and future perspective of essential oils in control Colletotrichum spp.: a sustainable alternative in postharvest treatment of fruits. Food Res Int 150:110758. https://doi.org/10.1016/j.foodres.2021.110758

    Article  CAS  Google Scholar 

  5. Zakaria L (2021) Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—a review. Agriculture 11:297. https://doi.org/10.3390/agriculture11040297

    Article  CAS  Google Scholar 

  6. Benatar GV, Wibowo A, Suryanti (2021) First report of Colletotrichum asianum associated with mango fruit anthracnose in Indonesia. Crop Prot 141, 105432. https://doi.org/10.1016/j.cropro.2020.105432

  7. Valenzuela-Ortiz G, Gaxiola-Camacho SM, San-Martín-Hernández C, Martínez-Téllez MÁ, Aispuro-Hernández E, Lizardi-Mendoza J, Quintana-Obregón E (2022) Chitosan sensitivity of fungi isolated from mango (Mangifera indica L.) with anthracnose. Molecules 27:1244. https://doi.org/10.3390/molecules27041244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terao D, Batista DC, Ribeiro IJA (2016) Doenças da mangueira. In: Amorim L, Rezende JAM, Bergamin Filho A, Camargo LEA (eds) Manual de fitopatologia, vol 2, 5th edn. Agronômica Ceres Ltda, Ouro Fino, MG, pp 523–533

    Google Scholar 

  9. **aojiao L, Zeng S, Wisniewski M, Droby S, Yu L, An F, Leng Y, Wang C, **aojun L, He M, Liao Q, Liu J, Wang Y, Sui Y (2022) Current and future trends in the biocontrol of postharvest diseases. Crit Rev Food Sci Nutr 1–13. https://doi.org/10.1080/10408398.2022.2156977

  10. Sánchez-Torres P (2021) Molecular mechanisms underlying fungicide resistance in citrus postharvest green mold. J Fungi 7:783. https://doi.org/10.3390/jof7090783

    Article  CAS  Google Scholar 

  11. Kachur K, Suntres Z (2020) The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr 60:3042–3053. https://doi.org/10.1080/10408398.2019.1675585

    Article  CAS  PubMed  Google Scholar 

  12. Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W (2016) Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines 3(4):25

    Article  PubMed  PubMed Central  Google Scholar 

  13. He L-L, Zhao Y, Fan L-M, Zhan J-J, Tao L-H, Yang Y-H, Su F-W, Chen Q-B, Ye M (2023) In vitro and in vivo antifungal activity of Cymbopogon citratus essential oils from different climate conditions against Botrytis cinerea. Sci Hortic 308:111544. https://doi.org/10.1016/j.scienta.2022.111544

    Article  CAS  Google Scholar 

  14. Di Francesco A, Aprea E, Gasperi F, Parenti A, Placì N, Rigosi F, Baraldi E (2022) Apple pathogens: organic essential oils as an alternative solution. Sci Hortic 300:111075. https://doi.org/10.1016/j.scienta.2022.111075

    Article  CAS  Google Scholar 

  15. Cai X, Xu Z, Li X, Wang D, Ren X, Kong Q (2023) Underlying mechanism of menthol on controlling postharvest citrus sour rot caused by Geotrichum citri-aurantii. Postharvest Biol Technol 196:112160. https://doi.org/10.1016/j.postharvbio.2022.112160

    Article  CAS  Google Scholar 

  16. Nandhavathy G, Dharini V, Anand Babu P, Nambiar RB, Periyar Selvam S, Sadiku ER, Mahesh Kumar M (2021) Determination of antifungal activities of essential oils incorporated-pomegranate peel fibers reinforced-polyvinyl alcohol biocomposite film against mango postharvest pathogens. Mater Today Proc 38:923–927. https://doi.org/10.1016/j.matpr.2020.05.384

    Article  CAS  Google Scholar 

  17. Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A (2014) Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Médicale 24:e51–e56. https://doi.org/10.1016/j.mycmed.2014.01.063

    Article  CAS  Google Scholar 

  18. Van de Vel E, Sampers I, Raes K (2019) A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit Rev Food Sci Nutr 59:357–378. https://doi.org/10.1080/10408398.2017.1371112

    Article  CAS  PubMed  Google Scholar 

  19. Sarkhosh A, Schaffer B, Vargas AI, Palmateer AJ, Lopez P, Soleymani A (2018) In vitro evaluation of eight plant essential oils for controlling Colletotrichum, Botryosphaeria, Fusarium and Phytophthora fruit rots of avocado, mango and papaya. Plant Prot Sci 54(3):153–162

    Article  CAS  Google Scholar 

  20. Adams RP (2009) In identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 4th edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  21. Santos SN, Melo I (2016) A rapid primary screening method for antitumor using the oomycete Pythium aphanidermatum. Nat Prod Chem Res 4:4–7

    Article  Google Scholar 

  22. Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. John Wiley & Sons, New York

  23. Yan J, Wu H, Chen K, Feng J, Zhang Y (2021) Antifungal activities and mode of action of Cymbopogon citratus, Thymus vulgaris, and Origanum heracleoticum essential oil vapors against Botrytis cinerea and their potential application to control postharvest strawberry gray mold. Foods 10:2451. https://doi.org/10.3390/foods10102451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Almasaudi NM, Al-Qurashi AD, Elsayed MI, Abo-Elyousr KAM (2022) Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. J Plant Pathol 104:317–328. https://doi.org/10.1007/s42161-021-01008-8

    Article  Google Scholar 

  25. Regnier T, Combrinck S, Veldman W, Du Plooy W (2014) Application of essential oils as multi-target fungicides for the control of Geotrichum citri-aurantii and other postharvest pathogens of citrus. Ind Crop Prod 61:151–159. https://doi.org/10.1016/j.indcrop.2014.05.052

    Article  CAS  Google Scholar 

  26. Andrade-Ochoa S, Chacón-Vargas KF, Sánchez-Torres LE, Rivera-Chavira BE, Nogueda-Torres B, Nevárez-Moorillón GV (2021) Diferencial antimicrobial effect of essential oils and their main components: insights based on the cell membrane and external structure. Membranes 11:405. https://doi.org/10.3390/membranes11060405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oliveira J, Gloria EM, Parisi MCM, Baggio JS, Silva PPM, Ambrosio CMS, Spoto MHF (2019a) Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci Hortic 243:261–267. https://doi.org/10.1016/j.scienta.2018.08.032

    Article  CAS  Google Scholar 

  28. Oliveira J, Parisi MCM, Baggio JS, Silva PPM, Paviani B, Spoto MHF, Gloria EM (2019b) Control of Rhizopus stolonifer in strawberries by the combination of essential oil with carboxymethylcellulose. Int J Food Microbiol 292:150–158. https://doi.org/10.1016/j.ijfoodmicro.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  29. Haddout S (2022) Different essential oil on antifungal activity of grape Fusarium sp. In: Advances in Food Safety and Environmental Engineering, 1st edn. CRC Press, London. https://doi.org/10.1201/9781003318514-12

    Chapter  Google Scholar 

  30. Vilaplana R, Pazmiño L, Valencia-Chamorro S (2018) Control of anthracnose, caused by Colletotrichum musae, on postharvest organic banana by thyme oil. Postharvest Biol Technol 138:56–63. https://doi.org/10.1016/j.postharvbio.2017.12.008

    Article  CAS  Google Scholar 

  31. Danh LT, Giao BT, Duong CT, Nga NTT, Tien DTK, Tuan NT, Huong BTC, Nhan TC, Trang DTX (2021) Use of essential oils for the control of anthracnose disease caused by Colletotrichum acutatum on post-harvest mangoes of Cat Hoa Loc variety. Membranes 11:719. https://doi.org/10.3390/membranes11090719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nunes CR, Valente PM, Silva FD da, Valente VMM (2021) Composição química e atividade antifúngica do óleo essencial de thymus vulgaris sobre Aspergillus niger, Penicillium expansum, Sclerotinia sclerotiorum e Sclerotium rolfsii. Braz J Dev 7, 14250–14260. https://doi.org/10.34117/bjdv7n2-173

  33. Sivaram S, Somanathan H, Kumaresan SM, Muthuraman MS (2022) The beneficial role of plant based thymol in food packaging application: a comprehensive review. Appl Food Res 2:100214. https://doi.org/10.1016/j.afres.2022.100214

    Article  CAS  Google Scholar 

  34. Zhang J, Ma S, Du S, Chen S, Sun H (2019) Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. J Food Sci Technol 56:2611–2620. https://doi.org/10.1007/s13197-019-03747-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Milagres de Almeida J, Crippa BL, Alencar M, de Souza VV, Perez Alonso VP, da Motta Santos Júnior E, Siqueira Franco Picone C, Prata AS, Cirone Silva NC (2023) Antimicrobial action of oregano, thyme, clove, cinnamon and black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 144:109356. https://doi.org/10.1016/j.foodcont.2022.109356

    Article  CAS  Google Scholar 

  36. Spadaro D, Gullino ML (2014) Use of essential oils to control postharvest rots on pome and stone fruit. In: Prusky D, Gullino ML (eds) Post-Harvest Pathology. Springer International Publishing, Cham, pp 101–110. https://doi.org/10.1007/978-3-319-07701-7_9

    Chapter  Google Scholar 

  37. Souza VVMA, Almeida JM, Barbosa LN, Silva NCC (2022) Citral, carvacrol, eugenol and thymol: antimicrobial activity and its application in food. J Essent Oil Res 34:181–194. https://doi.org/10.1080/10412905.2022.2032422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP: 2018/25318-7) for the financial support. The authors also thank Mrs. Rosely dos Santos Nascimento and Miss Débora Renata Cassoli de Souza for their help in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Simoni Dias Vilela.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Admir Giachini

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilela, E.S.D., Terao, D., do Nascimento de Queiroz, S.C. et al. Essential oils on the control of fungi causing postharvest diseases in mango. Braz J Microbiol 55, 689–698 (2024). https://doi.org/10.1007/s42770-023-01237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01237-2

Keywords

Navigation