Log in

Salt tolerance of endophytic root bacteria and their effects on seed germination and viability on tomato plants

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salinity is one of the most brutal environmental factors limiting the productivity of agricultural lands worldwide. It is considered that the salinity may be one of the important reasons for the low yield in Iğdır of the tomato plants, which is medium resistant (3–5 dS.m−1) among vegetables. Eco-friendly techniques such as endophytic root bacteria treatments (ERB) are needed to restore saline soils to agriculture and also to increase the yield of tomatoes. Endophytic bacteria colonizing the inside of plants increase plant growth by various mechanisms and also mitigate the adverse effects of biotic and abiotic stresses on plants. In this study, endophytic bacteria were isolated from the roots of tomato plants exposed to salt stress. Then, these isolates’ tolerance levels to different NaCl (0, 0.1, 0.2, 0.4, 0.8 M) concentrations and their potential to promote plant growth (PGP) traits were determined. It was recorded that 14.8% of the isolates whose salt tolerance was tested were highly tolerant to NaCl and 18.5% were highly susceptible. The tested ERB isolates exhibited typical PGP characteristics such as siderophore production (4–30 mm diameter), phosphate solubilizing activity (6–16 mm diameter), and IAA production activity (24.9–171.6 µg/ml). Moreover, it was determined that the nitrogen fixation potential is high 55.7% of the isolates tested, and 11.1% low. In addition, the effects of ERB treatments on germination and vigor index in two tomato cultivars under standard and saline conditions in the lab were evaluated. Some ERB isolates in tomato plants under standard and saline conditions increased seed viability, hypocotyl length, root length, and seedling fresh weight, and also accelerated germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145. https://doi.org/10.1016/S0065-2296(10)53004-0

    Article  CAS  Google Scholar 

  2. Ruan C-J, da Silva JAT, Mopper S et al (2010) Halophyte improvement for a salinized world. CRC Crit Rev Plant Sci 29:329–359. https://doi.org/10.1080/07352689.2010.524517

    Article  CAS  Google Scholar 

  3. Karaoğlu M, Yalçın AM (2018) Toprak Tuzluluğu ve Iğdır Ovası Örneği. J Agric 1:27–41

    Google Scholar 

  4. Özkutlu F, İnce E (1999) Harran Ovasının mevcut tuzluluğu ve potansiyel yayılım alanı. Harran Üniv Ziraat Fak Derg 2:909–914

    Google Scholar 

  5. Akiş A, Kaya B, Seferov R, Ozan Başkan H (2005) Harran Ovası ve Çevresindeki Tarım Arazilerinde Tuzluluk Problemi ve Bu Problemin İklim Özellikleriyle İlişkisi. Selçuk Üniversitesi Sos Bilim Enstitüsü Derg 21–38

  6. MGM (2020) İklim Sınıflandırmaları. Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=IGDIR. Accessed 18 Feb 2020

  7. Temel S, Şimşek U, Tarihi G (2011) Iğdır Ovası Toprakların Çoraklaşma Süreci ve Çözüm Önerileri. Alinteri J Agric Sci 21:53–59

    Google Scholar 

  8. TUIK (2021) Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. Accessed 14 Nov 2022

  9. Ertürk Y, Çirka M (2015) Türkiye’de ve Kuzey Doğu Anadolu Bölgesi (KDAB)’nde domates üretimi ve pazarlaması. Yüzüncü Yıl Üniversitesi Tarım Bilim Derg 25:84–97. https://doi.org/10.29133/YYUTBD.236256

  10. MGM (2022) İl ve ilçeler için meterolojik veri. Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=undefined&m=IGDIR. Accessed 14 Nov 2022

  11. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  12. Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agric Ecosyst Environ 34:279–303. https://doi.org/10.1016/0167-8809(91)90115-E

    Article  Google Scholar 

  13. Kloepper J, Schroth M (1978) Plant growth promoting rhizobacteria on radishes . In: Proc. 4th Int. Conf. Plant Path. Bact. Angers, pp 879–882

  14. Kumari B, Mallick MA, Solanki MK et al (2019) Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture BT - Plant Health Under Biotic Stress: Volume 2: Microbial Interactions. Plant Heal Under Biot Stress 109–127. https://doi.org/10.1007/978-981-13-6040-4_6

  15. Wang CJ, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565. https://doi.org/10.1371/JOURNAL.PONE.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144. https://doi.org/10.1016/S0966-842X(98)01229-3

    Article  CAS  PubMed  Google Scholar 

  17. Chanway CP, Shishido M, Nairn J et al (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88. https://doi.org/10.1016/S0378-1127(99)00300-X

    Article  Google Scholar 

  18. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/J.TIM.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  19. Vaishnav A, Shukla AK, Sharma A et al (2018) Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul 38:650–668. https://doi.org/10.1007/S00344-018-9880-1

    Article  Google Scholar 

  20. Berg G, Krechel A, Ditz M et al (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. https://doi.org/10.1016/J.FEMSEC.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. Microb Root Endophytes 15–31. https://doi.org/10.1007/3-540-33526-9_2

  23. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria. Lab Guid Identif plant Pathog Bact 299–315

  24. Hallmann J, Kloepper JW, Rodríguez-Kábana R (1997) Application of the scholander pressure bomb to studies on endophytic bacteria of plants. Can J Microbiol 43:411–416. https://doi.org/10.1139/m97-058

    Article  CAS  Google Scholar 

  25. Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215. https://doi.org/10.1006/BCON.2000.0837

    Article  Google Scholar 

  26. Ozaktan H, Gül A, Çakır B et al (2013) Isolation optimization of bacterial endophytes from cucumber plants and evaluation of their effects on growth promotion and biocontrol. Endophytes plant Prot state art Proc 5th Int Symp Plant Prot Plant Heal Eur Humboldt Univ Berlin, Berlin-Dahlem, Ger 26–29 May, 2013 262–268

  27. Gutierrez C, Somoskovi A, Natarajan K, Bell D (2018) Need for better adherence to optimal incubation temperature for quality laboratory diagnostics and antibiotic resistance monitoring. Afr J Lab Med 7. https://doi.org/10.4102/AJLM.V7I2.789

  28. Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51–53. https://doi.org/10.1128/JMBE.V12I1.249

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/J.1574-6968.1999.TB13383.X

    Article  CAS  PubMed  Google Scholar 

  30. Caceres EAR (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990. https://doi.org/10.1128/AEM.44.4.990-991.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/S11104-014-2186-6/FIGURES/4

    Article  CAS  Google Scholar 

  32. Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15. https://doi.org/10.1034/J.1399-3054.2003.00086.X

    Article  CAS  PubMed  Google Scholar 

  34. Gang S, Sharma S, Saraf M et al (2019) Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-protocol 9. https://doi.org/10.21769/BIOPROTOC.3230

  35. Orozco-Mosqueda MDC, Duan J, DiBernardo M et al (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392. https://doi.org/10.3389/FMICB.2019.01392/BIBTEX

  36. ISTA (2017) International rules for seed testing. In: Int. Seed Test. Assoc.

  37. Uysal A, Kurt Ş, Soylu S et al (2019) Yaprağı Yenen Sebzelerdeki Mikroorganizma Türlerinin MALDI-TOF MS (Matris Destekli Lazer Desorpsiyon/İyonizasyon Uçuş Süresi Kütle Spektrometresi) Tekniği Kullanılarak Tanılanması. Yüzüncü Yıl Üniversitesi Tarım Bilim Derg 29:595–603. https://doi.org/10.29133/YYUTBD.627850

  38. Pavlovic M, Konrad R, Iwobi AN et al (2012) A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiol Lett 328:46–53. https://doi.org/10.1111/J.1574-6968.2011.02479.X

    Article  CAS  PubMed  Google Scholar 

  39. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/J.MICRES.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Del Amor FM, Martinez V, Cerdá A (2001) Salt tolerance of tomato plants as affected by stage of plant development. HortScience 36:1260–1263. https://doi.org/10.21273/HORTSCI.36.7.1260

  41. Glenn E, Brown J, Khan M (1997) Mechanisms of salt tolerance in higher plants. In: Basra AS, Basra RK (eds) Mechanisms of Environmental Stress Resistance in Plants. Harwood Academic Publishers, Netherlands, pp 83–110

    Google Scholar 

  42. Bressan R (2008) Stres Fizyolojisi. In: Taiz L, Zeiger E, Türkan İ (translation editor) (eds) Bitki Fizyolojisi. Palme Yayıncılık , Ankara , pp 591–620

  43. Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351. https://doi.org/10.1016/J.ENVEXPBOT.2006.12.005

    Article  CAS  Google Scholar 

  44. Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic (Amsterdam) 86:247–260. https://doi.org/10.1016/S0304-4238(00)00151-5

    Article  CAS  Google Scholar 

  45. Kurum R, Ulukapi K, Aydinşakir K, Onus AN (2013) The influence of salinity on seedling growth of some pumpkin varieties used as rootstock. Not Bot Hortı Agrobot Cluj-Napoca 41:219–225. https://doi.org/10.15835/NBHA4118349

  46. Huez-López MA, Ulery AL, Samani Z et al (2011) Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I. Growth and yield. Trop Subtrop Agroecosystems 14:137–147

    Google Scholar 

  47. Kıran S, Ateş Ç, Kuşvuran Ş et al (2017) Tuzluluk ve Kuraklık Stresi Altında Farklı Patlıcan Anaç/Kalem Kombinasyonlarının Bazı Morfolojik Özelliklerinde Meydana Gelen Değişimlerin İncelenmesi. J Inst Sci Technol 7:43–54. https://doi.org/10.21597/jist.2017.139

  48. Dajic Z (2006) Salt stress. In: Physiology and Molecular Biology of Stress Tolerance in Plants. Springer Netherlands, p 345

  49. Munns R (2002) Salinity, growth and phytohormones. Salin Environ - Plants - Mol 271–290. https://doi.org/10.1007/0-306-48155-3_13

  50. Paul D, Bharathkumar S, Sudha N (2005) Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55:243–257

    Google Scholar 

  51. Paul D, Sarma Y (2006) Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Prot 39:311–314. https://doi.org/10.1080/03235400500301190

    Article  CAS  Google Scholar 

  52. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8. https://doi.org/10.1016/j.tibtech.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  53. Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C et al (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273. https://doi.org/10.1007/S11104-007-9191-Y/FIGURES/5

    Article  CAS  Google Scholar 

  54. Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    Article  CAS  Google Scholar 

  55. Akbaba M, Ozaktan H (2018) Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt J Biol Pest Control 28:14. https://doi.org/10.1186/s41938-017-0020-1

  56. Ostrowski M, Jakubowska A (2008) Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum). J Plant Physiol 165:564–569. https://doi.org/10.1016/J.JPLPH.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  57. Swarnalakshmi K, Yadav V, Tyagi D et al (2020) Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9:1596. https://doi.org/10.3390/PLANTS9111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shahab S, Ahmed N, Khan N (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. African J Agric Res 4:1312–1316

    Google Scholar 

  59. Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 7. https://doi.org/10.3389/FMICB.2016.01334

  60. Haidar B, Ferdous M, Fatema B et al (2018) Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol Res 208:43–53. https://doi.org/10.1016/J.MICRES.2018.01.008

    Article  PubMed  Google Scholar 

  61. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608. https://doi.org/10.1139/M90-105

    Article  CAS  Google Scholar 

  62. Andrade LF, de Souza GLOD, Nietsche S et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52:27–34. https://doi.org/10.1007/s12275-014-3019-2

    Article  CAS  PubMed  Google Scholar 

  63. Dowling D, Sexton R, Fenton A et al (1996) Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control. In: NakazawaTfK, Haas D, Silver S (eds) Molecular Biology of Pseudomonads. ASM Press, Washington DC, pp 502–511

  64. Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36. https://doi.org/10.1094/MPMI-08-11-0204

    Article  CAS  PubMed  Google Scholar 

  65. Rungin S, Indananda C, Suttiviriya P et al (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 102:463–472. https://doi.org/10.1007/S10482-012-9778-Z/FIGURES/3

    Article  CAS  Google Scholar 

  66. Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565. https://doi.org/10.1007/S12275-010-0082-1/METRICS

    Article  CAS  PubMed  Google Scholar 

  67. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. https://doi.org/10.1016/S0734-9750(99)00014-2

    Article  PubMed  Google Scholar 

  68. Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg, pp 1–44

    Google Scholar 

  69. Barnawal D, Bharti N, Tripathi A et al (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564. https://doi.org/10.1007/S00344-015-9560-3/TABLES/2

    Article  CAS  Google Scholar 

  70. Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41:574–583. https://doi.org/10.1080/01904167.2017.1392574/SUPPL_FILE/LPLA_A_1392574_SM2314.TIF

    Article  CAS  Google Scholar 

  71. Rasche F, Marco-Noales E, Velvis H et al (2006) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140. https://doi.org/10.1007/S11104-006-9103-6/FIGURES/2

    Article  CAS  Google Scholar 

  72. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136. https://doi.org/10.1111/J.1574-6968.2009.01625.X

    Article  CAS  PubMed  Google Scholar 

  73. Sziderics AH, Rasche F, Trognitz F et al (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). 101139/W07-082 53:1195–1202. https://doi.org/10.1139/W07-082

  74. Liu H, Carvalhais LC, Crawford M et al (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552. https://doi.org/10.3389/FMICB.2017.02552/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  75. Etesami H, Glick BR (2020) Halotolerant plant growth–promoting bacteria: prospects for alleviating salinity stress in plants. Environ Exp Bot 178:104124. https://doi.org/10.1016/J.ENVEXPBOT.2020.104124

    Article  CAS  Google Scholar 

  76. Grigore MN, Ivanescu L, Toma C (2014) Halophytes: an integrative anatomical study. Halophytes An Integr Anat Study 1–548. https://doi.org/10.1007/978-3-319-05729-3/COVER

  77. Tan YS, Zhang RK, Liu ZH et al (2022) Microbial adaptation to enhance stress tolerance. Front Microbiol 13:1205

    Article  Google Scholar 

  78. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4. https://doi.org/10.1186/1746-1448-4-2

  79. Shoemaker WR, Jones SE, Muscarella ME et al (2021) Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 118:e2101691118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arora NK, Fatima T, Mishra J et al (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  Google Scholar 

  81. Jhuma TA, Rafeya J, Sultana S et al (2021) Isolation of endophytic salt-tolerant plant growth-promoting rhizobacteria from Oryza sativa and evaluation of their plant growth-promoting traits under salinity stress condition. Front Sustain Food Syst 5:250

    Article  Google Scholar 

  82. Safari D, Jamali F, Nooryazdan H, Bayat F (2016) Screening fluorescent pseudomonads isolated from wheat rhizosphere for plant growth- promoting and salt tolerance properties. Biol Forum – An Int J 8:35–42

  83. Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401. https://doi.org/10.1016/J.ENVEXPBOT.2009.04.010

    Article  CAS  Google Scholar 

  84. dos Santos VM, de Melo AV, Siebeneichler SC et al (2013) Índices fisiológicos de plântulas de milho (Zea mays L.) sob ação de bioestimulantes. J Biotechnol Biodivers 4:232–239

    Article  Google Scholar 

  85. Binsfeld JA, Piccinin Barbieri AP, Huth C et al (2014) Uso de bioativador, bioestimulante e complexo de nutrientes em sementes de soja. Pesqui Agropecuária Trop 88–94

  86. Turan M, Yildirim E, Ekinci M, Argin S (2021) Effect of biostimulants on yield and quality of cherry tomatoes grown in fertile and stressed soils. HortScience 56:414–423. https://doi.org/10.21273/HORTSCI15568-20

  87. Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  88. Yıldırım E, Turan M, Ekıncı M et al (2015) Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom Biotechnol Lett 20:10929–10935

    Google Scholar 

  89. Dursun A, Yildirim E, Turan M et al (2019) Determination of the effects of bacterial fertilizer on yield and growth parameters of tomato. J Agric Sci Technol 21:1227–1234

    Google Scholar 

Download references

Acknowledgements

The study was conducted in the labs of the Departments of Plant Protection and Horticulture at Iğdır University in Iğdır (Turkey). The authors would like to acknowledge the assistance of Hatay Mustafa Kemal University Centre for Implementation and Research of Plant Health Clinic with MALDI-TOF mass spectrometry analysis.

Funding

This study was financially supported by Iğdır University Scientific Research Projects Coordinatorship (Project No: ZİF1021A03).

Author information

Authors and Affiliations

Authors

Contributions

All authors have reviewed the manuscript and approved its submission to Journal of Brazilian Journal of Microbiology.

Corresponding author

Correspondence to Mustafa Akbaba.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Not applicable.

Additional information

Responsible Editor: Admir Giachini

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaba, M., Özden, E. Salt tolerance of endophytic root bacteria and their effects on seed germination and viability on tomato plants. Braz J Microbiol 54, 3147–3162 (2023). https://doi.org/10.1007/s42770-023-01127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01127-7

Keywords

Navigation