Log in

Potential in vitro action of an adenosine analog and synergism with penicillin against Corynebacterium pseudotuberculosis

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Caseous lymphadenitis is a well-known disease caused by Corynebacterium pseudotuberculosis affecting small ruminants with small significance to human health because of its minor zoonotic potential. In both cases, few treatment options are available and conventional antimicrobial therapy is commonly refractory due to development of pyogranulomatous reactions, bringing great interest in discovering novel therapeutics for more suitable approaches. Dideoxynucleotides presented antibacterial action against various bacteria but were never described for C. pseudotuberculosis. Hypothesizing the antimicrobial action of 2’,3’-dideoxiadenosine (ddATP) against C. pseudotuberculosis, we performed for the first time an investigation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in the ATCC® 19,410 strain and a well-characterized clinical isolate of C. pseudotuberculosis. We also assessed potential synergism with penicillin. ddATP showed a growth delay effect for C. pseudotuberculosis at 2 µmol/mL and a MIC and MBC of 4 µmol/mL against the ATCC® 19,410 strain, but not for the clinical strain. An antimicrobial effect was observed when using concentrations lower than the MIC of ddATP associated with penicillin for both strains tested. Our data suggest the potential of nucleotide analogs, especially adenosine, and its combination with penicillin, as a possible novel treatment for C. pseudotuberculosis-induced infections, and contributes with knowledge regarding alternative drugs to treat C. pseudotuberculosis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

Not applicable.

References

  1. Dorella FA, Pacheco LGC, Oliveira SC, Miyoshi A, Azevedo V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37:201–218. https://doi.org/10.1051/vetres:2005056

    Article  CAS  Google Scholar 

  2. Baird GJ, Fontaine MC (2007) Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol 137:179–210. https://doi.org/10.1016/j.jcpa.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  3. Bastos BL, Portela RWD, Dorella FA, Ribeiro D, Seyffert N, Castro TLP, Miyoshi A, Oliveira SC, Meyer R, Azevedo V (2012) Corynebacterium pseudotuberculosis: immunological responses in animal models and zoonotic potential. J Clin Cell Immunol 4:1–15. https://doi.org/10.4172/2155-9899.S4-005

    Article  Google Scholar 

  4. Zavoshti FR, Khoo**e ABS, Helan JA, Hassanzadeh B, Heydari AA (2012) Frequency of caseous lymphadenitis (CLA) in sheep slaughtered in an abattoir in Tabriz: comparison of bacterial culture and pathological study. Comp Clin Pathol 21:667–671. https://doi.org/10.1007/s00580-010-1154-7

    Article  Google Scholar 

  5. Oreiby AF (2015) Diagnosis of caseous lymphadenitis in sheep and goat. Small Rumin Res 123:160–166. https://doi.org/10.1016/j.smallrumres.2014.11.013

    Article  Google Scholar 

  6. Windsor PA, Bush RD (2016) Caseous lymphadenitis: present and near forgotten from persistent vaccination? Small Rumin Res 142:6–10. https://doi.org/10.1016/j.smallrumres.2016.03.023

    Article  Google Scholar 

  7. Baird GJ, Malone FE (2010) Control of caseous lymphadenitis in six sheep flock using clinical examination and regular ELISA testing. Vet Rec 166:358–362. https://doi.org/10.1136/vr.b4806

    Article  CAS  PubMed  Google Scholar 

  8. Jesse FFA, Bitrus AA, Abba Y, Chung ELT, Sadiq MA, Hambali IU, Perera H, Haron AW, Lila MAM, Saharee AA, Norsidin MJ, Harith A (2013) Strategic management of a clinical case of recurrent caseous lymphadenitis in a goat farm. Res J Vet Practitioners 4:42–6. https://doi.org/10.14737/journal.rjvp/2016/4.3.42.46

    Article  Google Scholar 

  9. Gezon HM, Bither HD, Hanson LA, Thompson JK (1991) Epizootic of external and internal abscesses in a large goat herd over a 16-year period. J Am Vet Med Assoc 198:257–263

    CAS  PubMed  Google Scholar 

  10. Williamson LH (2001) Caseous lymphadenitis in small ruminants. Vet Clin N Am - Food Anim Pract 17:359–371. https://doi.org/10.1016/s0749-0720(15)30033-5

    Article  CAS  Google Scholar 

  11. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92. https://doi.org/10.1016/s0749-0720(15)30033-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guimarães AS, Carmo FB, Pauletti RB, Seyffert N, Ribeiro D, Lage AP, Heinemann MB, Miyoshi A, Azevedo V, Gouveia AMG (2011) Caseous lymphadenitis: epidemiology, diagnosis and control. Inst Integr Omics Appl Biotechnol J 2:33–43

    Google Scholar 

  13. Sellera FP, Gargano RG, Libera AMMPD, Benesi FJ, Azedo MR, Sá RLM, Ribeiro MS, Baptista MS, Pogliani FC (2016) Antimicrobial photodynamic therapy for caseous lymphadenitis abscesses in sheep: report of ten cases. Photodiagn Photodyn Ther 13:120–122. https://doi.org/10.1016/j.pdpdt.2015.12.006

    Article  Google Scholar 

  14. Toji L, Cohen SS (1969) The enzymatic termination of polydeoxynucleotides by 2’,3’-dideoxyadenosine triphosphate. Proc Natl Acad Sc USA 63:871–877. https://doi.org/10.1073/pnas.63.3.871

    Article  CAS  Google Scholar 

  15. Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N (2018) Nucleobase and nucleoside analogues: resistance and re-sensitization at the level of pharmacokinetics, pharmacodynamics and metabolism. Cancers 10:240. https://doi.org/10.3390/cancers10070240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomson JM, Lamont IL (2019) Nucleoside analogues as antibacterial agents. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00952

    Article  PubMed  PubMed Central  Google Scholar 

  17. Doering AM, Jansen M, Cohen SS (1966) Polymer synthesis in killed bacteria: lethality of 2’,3’-dideoxyadenosine. J Bacteriol 92:565–574. https://doi.org/10.1128/jb.92.3.565-574.1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beskid G, Eskin B, Cleeland R, Siebelist J, Cappetta AJ, Hill AD, Geiger RH (1981) Antibacterial activity of 2’,3’-dideoxyadenosine in vitro and in vivo. Antimicrob Agents Chemother 19:424–428. https://doi.org/10.1128/AAC.19.3.424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin SJ, Collin MT (2008) Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother 52(2):418–426. https://doi.org/10.1128/AAC.00678-07

    Article  CAS  PubMed  Google Scholar 

  20. Liu F, Ma R, Riordan SM, Grimm MC, Liu L, Wang Y, Zhang L (2017) Azathioprine, mercaptopurine, and 5-aminosalicylic acid affect the growth of IBD-associated Campylobacter species and other enteric microbes. Front Microbiol. 8(527). https://doi.org/10.3389/fmicb.2017.00527

  21. Sommerville L, Krynetsky EY, Krynetskaia NF, Beger RD, Zhang W, Marhefka CA, Evans WE, Kriwacki RW (2003) Structure and dynamics of thioguanine-modified duplex DNA*210. J Bio Chem 278(2):1005–1011. https://doi.org/10.1074/jbc.M204243200

    Article  Google Scholar 

  22. Afifi SI (2010) Studies on Corynebacterium pseudotuberculosis, Staphylococcus aureus and Staphylococcus aureus subsp. Anaerobius isolated from sheep skin abscesses in Beni Suef Governorate. J Vet Med Res. 20(1):149–153. https://doi.org/10.21608/jvmr.2020.77592

    Article  Google Scholar 

  23. Santiago LB, Alves FSF, Pinheiro RR, Santos VWS, Rodrigues AS, Chapaval L, Brito IF, Sousa FGC (2010) In vitro evaluation of the susceptibility of Corynebacterium pseudotuberculosis to different kinds of antisseptics and disinfectants. Arq Inst Biol. 7(4):593–600. https://doi.org/10.1590/1808-1657v77p5932010

    Article  Google Scholar 

  24. Weinstein MP (2018) M07 - Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th edn. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania

    Google Scholar 

  25. Hazan R, Que YA, Maura D, Rahme LG (2012) A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 12(259). https://doi.org/10.1186/1471-2180-12-259

  26. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtire plate-based antibacterial assay incorporatinf resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324. https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zander J, Besier S, Faetke S, Saum SH, Muller V, Wichelhaus TA (2010) Antimicrobial activities of trimethopin/sulfamethoxazole, 5-iodo-2’-deoxyuridine and rifampicin against Staphylococcus aureus. Int J Antimicrob Agents 36(6):562–565. https://doi.org/10.1016/j.ijantimicag.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Join-Lambert OF, Ouache M, Canioni D, Beretti JL, Blanche S, Berche P, Kayal S (2006) Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. Pediatr Infect Dis J 25:848–851. https://doi.org/10.1097/01.inf.0000234071.93044.77

    Article  PubMed  Google Scholar 

Download references

Funding

The National Council for Scientific and Technological Development (CNPq) provided a scholarship for PNB (132282/2019). This funding source had no involvement in study design, development, or decisions.

Author information

Authors and Affiliations

Authors

Contributions

PNB and JPOF contributed to the conception and design of the study. PNB and CLP contributed to the samples collection. PNB, CLP, MGR, VACA, and AFJ contributed to the processing of the samples. PNB, ASB, and JPOF contributed to writing the first drafts of the manuscript. All authors contributed to manuscript revision, and read and approved the submitted version.

Corresponding author

Correspondence to Pedro Negri Bernardino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardino, P.N., de Paula, C.L., Pereira, A.F.M. et al. Potential in vitro action of an adenosine analog and synergism with penicillin against Corynebacterium pseudotuberculosis. Braz J Microbiol 54, 559–563 (2023). https://doi.org/10.1007/s42770-022-00885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00885-0

Keywords

Navigation