Log in

Inhibition of quorum sensing–associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 by Mycoleptodiscus indicus PUTY1

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is the second most emerging multidrug-resistant, opportunistic pathogen after Acinetobacter baumannii that poses a threat in nursing homes, hospitals, and patients who need devices such as ventilators and blood catheters. Its ability to form quorum sensing–regulated virulence factors and biofilm makes it more resistant to top most therapeutic agents such as carbapenems and next-generation antibiotics. In the current study, we studied the quorum quenching potential of secondary metabolites of Mycoleptodiscus indicus PUTY1 strain. In vitro observation showed a mitigation in virulence factors such as rhamnolipids, protease, elastase pyocyanin, exopolysaccharides, and hydrogen cyanide gas. Furthermore, a significant reduction in the motility such as swimming, swarming, twitching, and inhibition in biofilm formation by Pseudomonas aeruginosa PAO1 was observed. Results of in vitro studies were further confirmed by in silico studies through docking and molecular dynamic simulation of GC-MS-detected compounds of Mycoleptodiscus indicus employing LasR and RhlR proteins. Both in vitro and in silico observations indicate a new alternative approach for combating virulence of Pseudomonas aeruginosa by targeting its protein receptors LasR and RhlR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maisuria VB, Lopez-de Los Santos Y, Tufenkji N, Déziel E (2016) Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 6: 30169, https://doi.org/10.1038/srep30169 (2016)

  2. Geddes A (2000) Infection in the twenty-first century: predictions and postulates. J Antimicrob Chemother 46:873–877. https://doi.org/10.1093/jac/46.6.873

    Article  CAS  PubMed  Google Scholar 

  3. Borges A, Sousa P, Gaspar A, Vilar S, Borges F, Simões M (2017) Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS-dependent phenotypes. Biofouling 33:156–168. https://doi.org/10.1080/08927014.2017.1280732

    Article  CAS  PubMed  Google Scholar 

  4. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Amer J Res and Crit care med 165:867–903. https://doi.org/10.1164/ajrccm.165.7.2105078

    Article  Google Scholar 

  5. Hutchison ML, Govan JR (1999) Pathogenicity of microbes associated with cystic fibrosis. Microb Infect 1:1005–1014. https://doi.org/10.1016/S1286-4579(99)80518-8

    Article  CAS  Google Scholar 

  6. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb and Infect 2:1051–1060. https://doi.org/10.1016/S1286-4579(00)01259-4

    Article  CAS  Google Scholar 

  7. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  8. Middleton B, Rodgers HC, Cámara M, Knox AJ, Williams P, Hardman A (2002) Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7. https://doi.org/10.1111/j.1574-6968.2002.tb11019.x

    Article  CAS  PubMed  Google Scholar 

  9. Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K (2019) Two component regulatory systems and antibiotic resistance in gram-negative pathogens. Int j of mol sci 20:1781

    Article  CAS  Google Scholar 

  10. Lingzhi L, Haojie G, Dan G, Hongmei M, Yang L, Mengdie J, **aohui Z (2018) The role of two-component regulatory system in β-lactam antibiotics resistance. Microbiol Res 215:126–129

    Article  CAS  Google Scholar 

  11. Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mole microbiol 40:1215–1226

    Article  CAS  Google Scholar 

  12. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343. https://doi.org/10.1038/nchembio.1225

    Article  CAS  PubMed  Google Scholar 

  13. Willcox MDP, Zhu H, Conibear TCR, Hume EBH, Givskov M, Kjelleberg S, Rice SA (2008) Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 154:2184–2194. https://doi.org/10.1099/mic.0.2008/019281-0

    Article  CAS  PubMed  Google Scholar 

  14. Luo J, Biying D, Ke W, Shuangqi C, Tangjuan L, **ao**g C, Danqing L (2017) Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 12:e0176883. https://doi.org/10.1371/journal.pone.0176883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vandeputte OM, Martin K, Tsiry R, Caroline S, Pierre D, Sanda R, Billo D, Adeline M, Marie B, Mondher E (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132. https://doi.org/10.1099/mic.0.049338-0

    Article  CAS  PubMed  Google Scholar 

  16. Vasavi HS, Sudeep HV, Lingaraju HB, Prasad KS (2017) Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microb Pathog 104:64–71. https://doi.org/10.1016/j.micpath.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  17. Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198. https://doi.org/10.2307/3760635

    Article  Google Scholar 

  18. Patil MP, Patil RH, Maheshwari VL (2015) Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aegle marmelos. Curr Microbiol 71:39–48. https://doi.org/10.1007/s00284-015-0805-y

    Article  CAS  PubMed  Google Scholar 

  19. Oliveira BDÁ, Rodrigues AC, Cardoso BMI, Ramos ALCC, Bertoldi MC, Taylor JG, da Cunha LR, Pinto UM (2016) Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract. Ind Crop Prod 84:59–66. https://doi.org/10.1016/j.indcrop.2016.01.037

    Article  CAS  Google Scholar 

  20. Dolatabad HK, Javan-Nikkhah M, Shier WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 16:777–790. https://doi.org/10.1007/s11557-017-1315-z

    Article  Google Scholar 

  21. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  22. Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood map**: exploring new tools for comparative genome analyses. BMC Genomics 3:4. https://doi.org/10.1186/1471-2164-3-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Boil 57:758–771. https://doi.org/10.1080/10635150802429642

    Article  Google Scholar 

  24. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE):1–8. https://doi.org/10.1109/GCE.2010.5676129

  25. Husain FM, Ahmad I, Al-thubiani AS, Abulreesh HH, AlHazza IM, Aqil F (2017) Leaf extracts of Mangifera indica L. inhibit quorum sensing–regulated production of virulence factors and biofilm in test bacteria. Front Microbial 8:727. https://doi.org/10.3389/fmicb.2017.00727

    Article  Google Scholar 

  26. Sethupathy S, Shanmuganathan B, Kasi PD, Pandian SK (2016) Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens. J Appl Phycol 28:1987–1996. https://doi.org/10.1007/s10811-015-0717-z

    Article  CAS  Google Scholar 

  27. Luo J, Kong JL, Dong BY, Huang H, Wang K, Wu LH, Hou CC, Liang Y, Li B, Chen YQ (2016) Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug Des Dev Ther 10:183. https://doi.org/10.2147/DDDT.S97221

    Article  CAS  Google Scholar 

  28. Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 6:23347. https://doi.org/10.1038/srep23347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Packiavathy IASV, Priya S, Pandian SK, Ravi AV (2014) Inhibition of biofilm development of uropathogens by curcumin–an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–460. https://doi.org/10.1016/j.foodchem.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  30. Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F (2017) Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 33:50. https://doi.org/10.1007/s11274-016-2195-0

    Article  CAS  PubMed  Google Scholar 

  31. Chhibber S, Gondil VS, Sharma S, Kumar M, Wangoo N, Sharma RK (2017) A novel approach for combating Klebsiella pneumoniae biofilm using histidine functionalized silver nanoparticles. Front Microbiol 8:1104. https://doi.org/10.3389/fmicb.2017.01104

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rasamiravaka T, Ngezahayo J, Pottier L, Ribeiro SO, Souard F, Hari L, Stévigny C, Jaziri ME, Duez P (2017) Terpenoids from Platostoma rotundifolium (Briq.) AJ Paton alter the expression of quorum sensing-related virulence factors and the formation of biofilm in Pseudomonas aeruginosa PAO1. Int J Mol Sci 18:1270. https://doi.org/10.3390/ijms18061270

    Article  CAS  PubMed Central  Google Scholar 

  33. Gupta P, Sarkar A, Sandhu P, Daware A, Das MC, Akhter Y, Bhattacharjee S (2017) Potentiation of antibiotic against Pseudomonas aeruginosa biofilm: a study with plumbagin and gentamicin. J Appl microbial 123:246–261. https://doi.org/10.1111/jam.13476

    Article  CAS  Google Scholar 

  34. Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V (2015) Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One 10:e0135495. https://doi.org/10.1371/journal.pone.0135495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481. https://doi.org/10.1016/0003-2697(68)90154-1

    Article  CAS  PubMed  Google Scholar 

  36. Alasil SM, Omar R, Ismail S, Yusof MY (2015) Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by culture extract from novel bacterial species of Paenibacillus using a rat model of chronic lung infection. Inter J Bacteriol:2015. https://doi.org/10.1155/2015/671562

  37. Luciardi MC, Blázquez MA, Cartagena E, Bardón A, Arena ME (2016) Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. LWT-Food Sci Technol 68:373–380. https://doi.org/10.1016/j.lwt.2015.12.056

    Article  CAS  Google Scholar 

  38. García-Lara B, Saucedo-Mora MÁ, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, García-Contreras R (2015) Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol 61:299–305. https://doi.org/10.1111/lam.12456

    Article  CAS  PubMed  Google Scholar 

  39. Ghodsalavi B, Ahmadzadeh M, Soleimani M, Madloo PB, Taghizad-Farid R (2013) Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci 7:338

    CAS  Google Scholar 

  40. Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Strut Funct Bioinf 50:437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  Google Scholar 

  41. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56. https://doi.org/10.1016/0263-7855(90)80070-V

    Article  CAS  PubMed  Google Scholar 

  42. Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  PubMed  Google Scholar 

  43. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  44. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962. https://doi.org/10.1002/jcc.540130805

    Article  CAS  Google Scholar 

  45. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  46. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  47. Koo S, Sutton DA, Yeh WW, Thompson EH, Sigler L, Shearer JF, Hofstra DE, Wickes BL, Marty FM (2012) Invasive Mycoleptodiscus fungal cellulitis and myositis. Med Mycol 50:740–745. https://doi.org/10.3109/13693786.2012.656717

    Article  CAS  PubMed  Google Scholar 

  48. Andrioli WJ, Conti R, Araújo MJ, Zanasi R, Cavalcanti BC, Manfrim V, Toledo JS, Tedesco D, de Moraes MO, Pessoa C, Cruz AK (2014) Mycoleptones A–C and Polyketides from the Endophyte Mycoleptodiscus indicus. J Nat Prod 77:70–78. https://doi.org/10.1021/np4006822

    Article  CAS  PubMed  Google Scholar 

  49. Colombo L, Gennari C, Ricca GS, Scolastico C, Aragozzini F (1981) Detection of one symmetrical precursor during the biosynthesis of the fungal metabolite austdiol using [1, 2-13 C 2] acetate and [me-13 C] methionine. J Chem Soc Chem Commun 11:575–576. https://doi.org/10.1039/C39810000575

    Article  Google Scholar 

  50. Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342. https://doi.org/10.1007/s11101-010-9171-3

    Article  CAS  Google Scholar 

  51. Vasavi HS, Arun AB, Rekha PD (2016) Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect 49:8–15. https://doi.org/10.1016/j.jmii.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  52. Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS one 8:53441. https://doi.org/10.1371/journal.pone.0053441

    Article  CAS  Google Scholar 

  53. Wang GQ, Li TT, Li ZR, Zhang LC, Zhang LH, Han L, Tang PF (2016, 2016) Effect of negative pressure on proliferation, virulence factor secretion, biofilm formation, and virulence-regulated gene expression of Pseudomonas aeruginosa in vitro. Biomed Res Int. https://doi.org/10.1155/2016/7986234

  54. Zhou J, Bi S, Chen H, Chen T, Yang R, Li M, Fu Y, Jia AQ (2017) Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol 8:769. https://doi.org/10.3389/fmicb.2017.00769

    Article  PubMed  PubMed Central  Google Scholar 

  55. Musthafa KS, Saroja V, Pandian SK, Ravi AV (2011) Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 36:55–67. https://doi.org/10.1007/s12038-011-9011-7

    Article  CAS  PubMed  Google Scholar 

  56. Das A, Das MC, Sandhu P, Das N, Tribedi P, De UC, Akhter Y, Bhattacharjee S (2017) Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: a study with fruit extract. RSC Adv 7:5497–5513. https://doi.org/10.1039/C6RA24603F

    Article  CAS  Google Scholar 

  57. Hauser AR (2014) Pseudomonas aeruginosa virulence and antimicrobial resistance: two sides of the same coin? Crit Care Med 42. https://doi.org/10.1097/CCM.0b013e3182a120cd

  58. Zulianello L, Canard C, Köhler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147. https://doi.org/10.1128/IAI.01772-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Høiby N, Mathee K (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690. https://doi.org/10.1099/jmm.0.45539-0

    Article  CAS  PubMed  Google Scholar 

  60. Owlia P, Rasooli I, Saderi H, Aliahmadi M (2007) Retardation of biofilm formation with reduced productivity of alginate as a result of Pseudomonas aeruginosa exposure to Matricaria chamomilla essential oil. Pharmacogn Mag 3:83

    CAS  Google Scholar 

  61. Lauridsen RK, Sommer LM, Johansen HK, Rindzevicius T, Molin S, Jelsbak L, Engelsen SB, Boisen A (2017) SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients. Sci Rep 7:45264. https://doi.org/10.1038/srep45264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Selvamangai G, Bhaskar A (2012) GC–MS analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve. Asian Pac J Trop Biomed 2:S1329–S1332. https://doi.org/10.1016/S2221-1691(12)60410-9

    Article  Google Scholar 

  63. Kusch P, Deininger S, Specht S, Maniako R, Haubrich S, Pommerening T, Lin PKT, Hoerauf A, Kaiser A (2011) In vitro and in vivo antimalarial activity assays of seeds from Balanites aegyptiaca: compounds of the extract show growth inhibition and activity against plasmodial aminopeptidase. J Parasitol Res 2011. https://doi.org/10.1155/2011/368692

  64. Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111–1122. https://doi.org/10.1080/08927014.2014.972386

    Article  CAS  PubMed  Google Scholar 

  65. Saxena S, Vineet M, Neha K (2015) Muscodor tigerii sp. nov.-volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65:47–57. https://doi.org/10.1007/s13213-014-0834-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Pondicherry University for a fellowship. The Department of Biotechnology, Pondicherry University, is thanked for providing the facilities. The partial infrastructural support from UGC-SAP and DST-FIST programs are thanked.

Funding

The Pondicherry University provided a fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkateswara Sarma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Cristiano Gallina Moreira.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Pattnaik, S., Khan, M.B. et al. Inhibition of quorum sensing–associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 by Mycoleptodiscus indicus PUTY1. Braz J Microbiol 51, 467–487 (2020). https://doi.org/10.1007/s42770-020-00235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00235-y

Keywords

Navigation