Log in

Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5
Figure. 6
Figure. 7
Figure. 8

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

References

  1. Gaur, V.K., Sharma, P., and Sirohi, R. 2020. Assessing the impact of industrial waste on environment and mitigation strategies: a comprehensive review. Journal of Hazardous Materials 398: 123019. https://doi.org/10.1016/j.jhazmat.2020.123019.

    Article  CAS  Google Scholar 

  2. Luo, X.L., Ge, X.M., Cui, S.Q., et al. 2016. Value-added processing of crude glycerol into chemicals and polymers. Bioresource Technology 215: 144–154. https://doi.org/10.1016/j.biortech.2016.03.042.

    Article  CAS  Google Scholar 

  3. Kaur, J., Sarma, A.K., Jha, M.K., et al. 2020. Valorisation of crude glycerol to value-added products: perspectives of process technology, economics and environmental issues. Biotechnology Reports 27: e00487. https://doi.org/10.1016/j.btre.2020.e00487.

    Article  Google Scholar 

  4. Besco, S., Bosio, A., Brisotto, M., et al. 2014. Structural and mechanical characterization of sustainable composites based on recycled and stabilized fly ash. Materials 7(8): 5920–5933. https://doi.org/10.3390/ma7085920.

    Article  Google Scholar 

  5. Sahoo, P.K., Kim, K., Powell, M.A., et al. 2016. Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management. International Journal of Coal Science & Technology 3: 267–283. https://doi.org/10.1007/s40789-016-0141-2.

    Article  CAS  Google Scholar 

  6. Kuźnia, M., Magiera, A., Pielichowska, K., et al. 2019. Fluidized bed combustion fly ash as filler in composite polyurethane materials. Waste Management 92: 115–123. https://doi.org/10.1016/j.wasman.2019.05.012.

    Article  CAS  Google Scholar 

  7. Cui, S.Q., Liu, Z., and Li, Y.B. 2017. Bio-polyols synthesized from crude glycerol and applications on polyurethane wood adhesives. Industrial Crops and Products 108: 798–805. https://doi.org/10.1016/j.indcrop.2017.07.043.

    Article  CAS  Google Scholar 

  8. Gama, N.V., Silva, R., Costa, M., et al. 2016. Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams. Polymer Testing 56: 200–206. https://doi.org/10.1016/j.polymertesting.2016.10.006.

    Article  CAS  Google Scholar 

  9. Hejna, A., Kosmela, P., Klein, M., et al. 2018. Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol. Polymer Degradation and Stability 152: 29–42. https://doi.org/10.1016/j.polymdegradstab.2018.03.022.

    Article  CAS  Google Scholar 

  10. Luo, X.L., Hu, S.J., Zhang, X., et al. 2013. Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresource Technology 139: 323–329. https://doi.org/10.1016/j.biortech.2013.04.011.

    Article  CAS  Google Scholar 

  11. Kosmela, P., Hejna, A., Formela, K., et al. 2017. The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams. Journal of Polymers and the Environment 26: 2546–2554. https://doi.org/10.1007/s10924-017-1145-8.

    Article  CAS  Google Scholar 

  12. Kosmela, P., Hejna, A., Formela, K., et al. 2016. Biopolyols obtained via crude glycerol-based liquefaction of cellulose: Their structural, rheological and thermal characterization. Cellulose 23: 2929–2942. https://doi.org/10.1007/s10570-016-1034-7.

    Article  CAS  Google Scholar 

  13. Hu, S.J., Wan, C.X., and Li, Y.B. 2012. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresource Technology 103(1): 227–233. https://doi.org/10.1016/j.biortech.2011.09.125.

    Article  CAS  Google Scholar 

  14. Gama, N., Silva, R., Carvalho, A.P.O., et al. 2017. Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol. Polymer Testing 62: 13–22. https://doi.org/10.1016/j.polymertesting.2017.05.042.

    Article  CAS  Google Scholar 

  15. Jasiūnas, L., Skvorčinskienė, R., and Miknius, L. 2018. Wet and coarse: The robustness of two-stage crude glycerol mediated solvothermal liquefaction of residual biomass. Waste and Biomass Valorization 11: 2171–2181. https://doi.org/10.1007/s12649-018-0453-0.

    Article  CAS  Google Scholar 

  16. Chang, C., Liu, L.W., Li, P., et al. 2021. Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw. Industrial Crops and Products 160: 113098. https://doi.org/10.1016/j.indcrop.2020.113098.

    Article  CAS  Google Scholar 

  17. Carriço, C.S., Fraga, T., and Pasa, V.M.D. 2016. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal 85: 53–61. https://doi.org/10.1016/j.eurpolymj.2016.10.012.

    Article  CAS  Google Scholar 

  18. Santos, O.S., da Silva, M.C., Silva, V.R., et al. 2017. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. Journal of Hazardous Materials 324(Part B): 406–413. https://doi.org/10.1016/j.jhazmat.2016.11.004.

  19. Augaitis, N., Vaitkus, S., Czlonka, S., et al. 2020. Research of wood waste as a potential filler for loose-fill building insulation: Appropriate selection and incorporation into polyurethane biocomposite foams. Materials 13: 5336. https://doi.org/10.3390/ma13235336.

    Article  CAS  Google Scholar 

  20. Qi, X.G., Zhang, Y.S., Chang, C., et al. 2018. Thermal, mechanical, and morphological properties of rigid crude glycerol-based polyurethane foams reinforced with nanoclay and microcrystalline cellulose. European Journal of Lipid Science and Technology 120(5): 1700413. https://doi.org/10.1002/ejlt.201700413.

    Article  CAS  Google Scholar 

  21. Akkoyun, M. and Akkoyun, S. 2019. Blast furnace slag or fly ash filled rigid polyurethane composite foams: a comprehensive investigation. Journal of Applied Polymer Science 136: 47433. https://doi.org/10.1002/app.47433.

    Article  CAS  Google Scholar 

  22. Kuznia, M., Magiera, A., Zygmunt-Kowalska, B., et al. 2021. Fly ash as an eco-friendly filler for rigid polyurethane foams modification. Materials 14(21): 6604. https://doi.org/10.3390/ma14216604.

    Article  CAS  Google Scholar 

  23. Pareta, A.S., Gupta, R., and Panda, S.K. 2020. Experimental investigation on fly ash particulate reinforcement for property enhancement of PU foam core FRP sandwich composites. Composites Science and Technology 195: 108207. https://doi.org/10.1016/j.compscitech.2020.108207.

    Article  CAS  Google Scholar 

  24. Jiang, T.Y., Liu, S.J., AlMutawa, F., et al. 2019. Comprehensive reuse of pyrolysis chars from coals for fabrication of highly insulating building materials. Journal of Cleaner Production 222: 424–435. https://doi.org/10.1016/j.jclepro.2019.03.048.

    Article  CAS  Google Scholar 

  25. Chow, J.D., Chai, W.L., Yeh, C.M., et al. 2008. Recycling and application characteristics of fly ash from municipal solid waste incinerator blended with polyurethane foam. Environmental Engineering Science 25: 461–474. https://doi.org/10.1089/ees.2006.0037.

    Article  CAS  Google Scholar 

  26. Saha, M. 2022. Fly ash composites: A review. ar**v: 2202.11167. https://doi.org/10.20944/preprints202202.0110.v1.

  27. Ohenoja, K., Pesonen, J., Yliniemi, J., et al. 2020. Utilization of fly ashes from fluidized bed combustion: a review. Sustainability 12: 7. https://doi.org/10.3390/su12072988.

    Article  Google Scholar 

  28. Kausar, A. 2018. Polyurethane composite foams in high-performance applications: a review. Polymer-Plastics Technology and Engineering 57(4): 346–369. https://doi.org/10.1080/03602559.2017.1329433.

    Article  CAS  Google Scholar 

  29. ATSM International. 2005. Standard test methods for testing polyurethane Raw materials: determination of hydroxyl numbers of polyols, ATSM D4275-05. West Conshohocken: ASTM.

  30. ATSM International. 2008. Standard test methods for polyurethane raw materials: Determination of acid and alkalinity numbers of polyols, ATSM D1622-08. West Conshohocken: ASTM.

  31. ATSM International. 2008. Standard test method for apparent density of rigid cellular plastic, ATSM D1622-08. West Conshohocken: ASTM.

  32. ATSM International. 2010. Standard test method for compressive properties of rigid cellular plastics, ATSM D1621-10. West Conshohocken: ASTM.

  33. General Administration of Quality Supervision, Inspection and Quarantine of the PRC, Standardization Administration of the PRC. 2005. Plastics—Determination of burning behaviour by oxygen index—Part 2: Ambient-temperature test. GB/T2046.2-2009, National Standard of The People’s Republic of China.

  34. Borowicz, M., Paciorek-Sadowska, J., Lubczak, J., et al. 2019. Biodegradable, flame-retardant, and bio-based rigid polyurethane/polyisocyanurate foams for thermal insulation application. Polymers 11(11): 1816. https://doi.org/10.3390/polym11111816.

    Article  CAS  Google Scholar 

  35. Peyrton, J. and Avérous, L. 2021. Structure-properties relationships of cellular materials from bio-based polyurethane foams. Materials Science & Engineering R: Reports 145: 100608. https://doi.org/10.1016/j.mser.2021.100608.

    Article  Google Scholar 

  36. Kairyte, A., Kremensas, A., Vaitkus, S., et al. 2020. Fire suppression and thermal behavior of bio-based rigid polyurethane foam filled with biomass incineration waste ash. Polymers 12(3): 683. https://doi.org/10.3390/polym12030683.

    Article  CAS  Google Scholar 

  37. Silva, N.G.S., Cortat, L., Orlando, D., et al. 2020. Evaluation of rubber powder waste as reinforcement of the polyurethane derived from castor oil. Waste Management 116: 131–139. https://doi.org/10.1016/j.wasman.2020.07.032.

    Article  CAS  Google Scholar 

  38. Zhou, X., Sain, M.M., and Oksman, K. 2016. Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing 83: 56–62. https://doi.org/10.1016/j.compositesa.2015.06.008.

    Article  CAS  Google Scholar 

  39. Strakowska, A., Czlonka, S., and Kairyte, A. 2020. Rigid polyurethane foams reinforced with POSS-impregnated sugar beet pulp filler. Materials 13(23): 5493. https://doi.org/10.3390/ma13235493.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (No. 22178328, No. 52006200), the Henan Science and Technology Research Project (No. 222102320059), the Nanyang Collaborative Innovation Project (No. 21XTCX12002), and the Program of processing and efficient utilization of biomass resources (No. GZS2022007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Chang or Weihua Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, W., Li, M. et al. Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites. Waste Dispos. Sustain. Energy 4, 271–282 (2022). https://doi.org/10.1007/s42768-022-00112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-022-00112-4

Keywords

Navigation