Log in

Regeneration of Pea-Pod-Like Cellulose Acetate Fibers as Aerogel-Derived Boards for Building Thermal Regulation and Carbon Reduction

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Cellulose fibers play significant roles in building passive radiative cooling (PRC) and heating (PRH), benefiting from their porous structure and low thermal conductivity. However, the fixed structure and hydrophilic groups limit the regulation of optical and thermal properties. Herein, mechanically assisted solvent extraction strategy is proposed to regenerate cellulose acetate (CA) as pea-pod-like fibers. Different from natural fibers, photonic and thermal-storage particles are introduced into CA fibers to regulate optical selectivity and thermal properties. Further considering of building surface assembly, the biomimetic fibers are compressed into rigid bio-boards to achieve buildings thermal regulation. The results demonstrate that PRC bio-board can reflect ~ 94% of solar radiation and emit ~ 96% of thermal radiation and achieve ~ 11 ℃ (Isolar > 1500 W/m2 and Tenvironment ~ 35 ℃ at daytime) and 6 ℃ (nighttime) of cooling effects. The phase-change PRH bio-board integrates solar absorption (Asolar ~ 96%), thermal insulation (Tshielding ~ 30 ℃) and storage functions, which can heat building ~ 12 ℃ under Isolar ~ 1000 W/m2 and slowly releases heat for > 1200 s. According to evaluation, the bio-units can save over 45% of energy, 1.042 $/m2 cost and 4.978 kg/(m2 year) CO2 emission in Nan**g annually. It is believed that the results have positive effects on clarifying the structure–effect relationship and promoting the commercialization of thermal management materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are available in the main text or the supplementary materials. Requests should be directed to the corresponding authors.

References

  1. Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, et al. A radiative cooling structural material. Science. 2019;364(6442):760–3.

    Article  CAS  PubMed  Google Scholar 

  2. Sheng S-Z, Wang J-L, Zhao B, He Z, Feng X-F, Shang Q-G, et al. Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat Commun. 2023;14(1):3231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song J, Zhang W, Sun Z, Pan M, Tian F, Li X, et al. Durable radiative cooling against environmental aging. Nat Commun. 2022;13(1):4805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng C, Yang P, Liu H, Mao M, Liu Y, Xue T, et al. Bilayer porous polymer for efficient passive building cooling. Nano Energy. 2021;85: 105971.

    Article  CAS  Google Scholar 

  5. Mandal J, Yang Y, Yu N, Raman AP. Paints as a scalable and effective radiative cooling technology for buildings. Joule. 2020;4(7):1350–6.

    Article  Google Scholar 

  6. Zou H, Wang C, Yu J, Huang D, Yang R, Wang R. Solar spectrum management and radiative cooling film for sustainable greenhouse production in hot climates. Sci Bull. 2023;68(14):1493–6.

    Article  Google Scholar 

  7. Zhu W, Zhang Y, Mohammad N, Xu W, Tunc S, Shan X, et al. Large-scale industry-compatible sub-ambient radiative cooling pulp. Cell Rep Phys Sci. 2022;3(11): 101125.

    Article  CAS  Google Scholar 

  8. Zhu H, Wang Y, Qu M, Pan Y, Zheng G, Dai K, et al. Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater. 2022;5(3):1966–75.

    Article  CAS  Google Scholar 

  9. Shi M, Song Z, Ni J, Du X, Cao Y, Yang Y, et al. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano. 2023;17(3):2029–38.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Sheng X, Fang Y, Hu X, Gong S, Sheng M, et al. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv Funct Mater. 2023;33(18):2212776.

    Article  CAS  Google Scholar 

  11. Dai B, Li X, Xu T, Zhang X. Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl Mater Interfaces. 2022;14(16):18877–83.

    Article  CAS  PubMed  Google Scholar 

  12. Li S, **ao P, Yang W, Zhang C, Gu J, Kuo S-W, et al. Hierarchically nanostructured Janus membranes toward sustainable and efficient solar-to-thermal management. Adv Funct Mater. 2023;33(18):2209654.

    Article  CAS  Google Scholar 

  13. Cai J, Du M, Li Z. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7(7):2101182.

    Article  Google Scholar 

  14. Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed. 2022;61(22): e202200226.

    Article  CAS  Google Scholar 

  15. Zhu M, Yu J, Li Z, Ding B. Self-healing fibrous membranes. Angew Chem Int Ed. 2022;61(41): e202208949.

    Article  CAS  Google Scholar 

  16. Liu L, Shan X, Hu X, Lv W, Wang J. Superhydrophobic silica aerogels and their layer-by-layer structure for thermal management in harsh cold and hot environments. ACS Nano. 2021;15(12):19771–82.

    Article  CAS  PubMed  Google Scholar 

  17. Hu P, Wang J, Zhang P, Wu F, Cheng Y, Wang J, et al. Hyperelastic Kevlar nanofiber aerogels as robust thermal switches for smart thermal management. Adv Mater. 2023;35(3):2207638.

    Article  CAS  Google Scholar 

  18. Guan Q, Raza A, Mao SS, Vega LF, Zhang T. Machine learning-enabled inverse design of radiative cooling film with on-demand transmissive color. ACS Photonics. 2023;10(3):715–26.

    Article  CAS  Google Scholar 

  19. Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain. 2019;2(8):718–24.

    Article  Google Scholar 

  20. Hossain MM, Jia B, Gu M. A metamaterial emitter for highly efficient radiative cooling. Adv Opt Mater. 2015;3(8):1047–51.

    Article  CAS  Google Scholar 

  21. Cheng N, Miao D, Wang C, Lin Y, Babar AA, Wang X, et al. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem Eng J. 2023;460: 141581.

    Article  CAS  Google Scholar 

  22. Zhang Y, Wang T, Mei X, Chen M, Wu L. Ordered porous polymer films for highly efficient passive daytime radiative cooling. ACS Photonics. 2023;10(9):3124–32.

    Article  CAS  Google Scholar 

  23. Zhu W, Droguet B, Shen Q, Zhang Y, Parton TG, Shan X, et al. Structurally colored radiative cooling cellulosic films. Adv Sci. 2022;9(26):2202061.

    Article  CAS  Google Scholar 

  24. Ma Z, Xue T, Wali Q, Miao Y-E, Fan W, Liu T. Direct ink writing of polyimide/bacterial cellulose composite aerogel for thermal insulation. Compos Commun. 2023;39: 101528.

    Article  Google Scholar 

  25. Cai C, Wei Z, Ding C, Sun B, Chen W, Gerhard C, et al. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 2022;22(10):4106–14.

    Article  CAS  PubMed  Google Scholar 

  26. Cai S, Xu C, Jiang D, Yuan M, Zhang Q, Li Z, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;93: 106904.

    Article  CAS  Google Scholar 

  27. Li J, Cai J, Yu J, Li Z, Ding B. The rising of fiber constructed piezo/triboelectric nanogenerators: from material selections, fabrication techniques to emerging applications. Adv Funct Mater. 2023;33(44):2303249.

    Article  CAS  Google Scholar 

  28. Lv X, Liu Y, Yu J, Li Z, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2022;5(2):401–28.

    Article  Google Scholar 

  29. Xu D, Ge C, Chen Z, Liu Y, Chen T, Gao C, et al. Tree-inspired braiding fibrous frameworks enabling high-efficiency and salt-rejecting solar evaporation. J Mater Chem A. 2023;11(25):13510–8.

    Article  CAS  Google Scholar 

  30. Zhou H, Xu J, Liu X, Zhang H, Wang D, Chen Z, et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Adv Funct Mater. 2018;28(24):1705309.

    Article  Google Scholar 

  31. Cheng Z, Han H, Wang F, Yan Y, Shi X, Liang H, et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy. 2021;89: 106377.

    Article  CAS  Google Scholar 

  32. Jeong SY, Tso CY, Wong YM, Chao CYH, Huang B. Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol Energy Mater Sol Cells. 2020;206: 110296.

    Article  CAS  Google Scholar 

  33. Wang S, Wang Y, Zou Y, Chen G, Ouyang J, Jia D, et al. Biologically inspired scalable-manufactured dual-layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity. ACS Appl Mater Interfaces. 2021;13(18):21888–97.

    Article  CAS  PubMed  Google Scholar 

  34. Cai C, Chen W, Wei Z, Ding C, Sun B, Gerhard C, et al. Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy. 2023;114: 108625.

    Article  CAS  Google Scholar 

  35. Choe A, Yeom J, Kwon Y, Lee Y, Shin Y-E, Kim J, et al. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater Horiz. 2020;7(12):3258–65.

    Article  CAS  Google Scholar 

  36. Yue X, He M, Zhang T, Yang D, Qiu F. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl Mater Interfaces. 2020;12(10):12285–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work thanks for the supporting of the National Nature Science Foundation of China (52173158), National Natural Science Foundation of China (32171725) and Graduate Research and Innovation Projects of Jiangsu Province (KYCX21_0091). The authors thanks for the FDTD solutions provided by the Southeast University (China). This work is jointly completed by the corresponding author and co-authors, and no artificial intelligence (AI) participates in the process.

Author information

Authors and Affiliations

Authors

Contributions

SF conceptualization, methodology, software, investigation, formal analysis, writing-original draft; LY methodology, software, writing-original draft; MF investigation, formal analysis; HC measurements, investigation, performance evaluation; XH investigation, performance evaluation; MH conceptualization, funding acquisition, resources, supervision; XB supervision, writing-review and editing; YH supervision, writing-review and editing; YZ conceptualization, funding acquisition, resources, supervision, writing-review and editing.

Corresponding authors

Correspondence to Man He or Yuming Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 6548 KB)

42765_2024_377_MOESM2_ESM.docx

Supplementary file2 Details of materials preparation, characterization and theoretical calculation process are displayed in Supplementary Materials (DOCX 9258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Yao, L., Feng, M. et al. Regeneration of Pea-Pod-Like Cellulose Acetate Fibers as Aerogel-Derived Boards for Building Thermal Regulation and Carbon Reduction. Adv. Fiber Mater. 6, 570–582 (2024). https://doi.org/10.1007/s42765-024-00377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-024-00377-w

Keywords

Navigation