Log in

Mechanically Strong and Flame-Retardant PBO/BN/MXene Nanocomposite Paper with Low Thermal Expansion Coefficient, for Efficient EMI Shielding and Heat Dissipation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

As portable and wearable electronic devices are rapidly develo**, there is an urgent need for flexible and robust thermally conductive electromagnetic interference shielding materials to address the associated electromagnetic pollution and overheating issues. Herein, multifunctional poly(p-phenyl-2,6-phenylene bisoxazole) nanofiber/boron nitride nanosheet/Ti3C2Tx MXene nanosheet (PBO/BN/MXene) composite papers are prepared by a gel microparticle-mediated ordered assembly process with the aid of vacuum-assisted filtration. Nacre-like “brick and mortar” structure, segregated structure and sandwich structure are integrated into the composite paper, so that efficient thermally and electrically conductive networks have been established. When the BN and MXene contents are 29.2 wt% and 41.7 wt%, the 13 μm thick composite paper exhibits an EMI shielding performance of 31.8 dB and a thermal conductivity of 26.1 W/mK, markedly superior to those of the control samples without the ordered structures. Meanwhile, because of the unique architecture and inherent advantages of the building blocks, the composite paper exhibits extremely low coefficient of thermal expansion (~ 1.43 ppm/K), excellent mechanical properties, and outstanding thermal stability and flame retardance, making it highly advantageous for practical applications in electronic devices. This work offers a promising approach for fabricating high-performance multifunctional composites by constructing efficient filler networks.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan X, Liu TH, Zhou W, Yuan Q, Ying J, Yan Q, Lv L, Chen L, Wang X, Du S, Wan YJ, Sun R, Nishimura K, Yu J, Jiang N, Dai W, Lin CT. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface. ACS Nano. 2022;16:9254.

    Article  CAS  Google Scholar 

  2. He YJ, Shao YW, **ao YY, Yang JH, Qi XD, Wang Y. Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl Mater Interfaces. 2022;14:6057.

    Article  CAS  Google Scholar 

  3. Zhou Z, Liu J, Zhang X, Tian D, Zhan Z, Lu C. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv Mater Interfaces. 2019;6:1802040.

    Article  Google Scholar 

  4. Cao W, Ma C, Tan S, Ma M, Wan P, Chen F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019;11:72.

    Article  CAS  Google Scholar 

  5. Wang W, Yuen ACY, Long H, Yang W, Li A, Song L, Hu Y, Yeoh GH. Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Compos B. 2021;224: 109174.

    Article  CAS  Google Scholar 

  6. Ruan K, Guo Y, Lu C, Shi X, Ma T, Zhang Y, Kong J, Gu J. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research. 2021;2021:8438614.

    Article  CAS  Google Scholar 

  7. Dai W, Ma T, Yan Q, Gao J, Tan X, Lv L, Hou H, Wei Q, Yu J, Wu J, Yao Y, Du S, Sun R, Jiang N, Wang Y, Kong J, Wong C, Maruyama S, Lin CT. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 2019;13:11561.

    Article  CAS  Google Scholar 

  8. Mou PP, Zhao JC, Wang GZ, Shi SH, Wan GP, Zhou MF, Deng Z, Teng SJ, Wang GL. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem Eng J. 2022;437: 135285.

    Article  CAS  Google Scholar 

  9. Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon. 2021;177:377.

    Article  CAS  Google Scholar 

  10. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020;32: e2001093.

    Article  Google Scholar 

  11. Wyatt BC, Rosenkranz A, Anasori B. 2D MXenes: Tunable mechanical and tribological properties. Adv Mater. 2021;33: e2007973.

    Article  Google Scholar 

  12. Quero F, Rosenkranz A. Mechanical performance of binary and ternary hybrid MXene/nanocellulose hydro- and aerogels—a critical review. Adv Mater Interfaces. 2021;8:2100952.

    Article  CAS  Google Scholar 

  13. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353:1137.

    Article  CAS  Google Scholar 

  14. Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nystrom G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods. 2021;5: e2100889.

    Article  Google Scholar 

  15. Ma Z, Kang S, Ma J, Shao L, Zhang Y, Liu C, Wei A, **ang X, Wei L, Gu J. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano. 2020;14:8368.

    Article  CAS  Google Scholar 

  16. ** X, Wang J, Dai L, Liu X, Li L, Yang Y, Cao Y, Wang W, Wu H, Guo S. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J. 2020;380: 122475.

    Article  CAS  Google Scholar 

  17. Sun R, Zhang H-B, Liu J, **e X, Yang R, Li Y, Hong S, Yu Z-Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater. 2017;27:1702807.

    Article  Google Scholar 

  18. Xu J, Liu T, Zhang Y, Zhang Y, Wu K, Lei C, Fu Q, Fu J. Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter. 2021;4:2474.

    Article  CAS  Google Scholar 

  19. Gholivand H, Fuladi S, Hemmat Z, Salehi-Kho** A, Khalili-Araghi F. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. J Appl Phys. 2019;126: 065101.

    Article  Google Scholar 

  20. Wang A, Li SH, Zhang XY, Bao H. Roles of electrons on the thermal transport of 2D metallic MXenes. Phys Rev Mater. 2022;6: 014009.

    Article  CAS  Google Scholar 

  21. Weng Q, Wang X, Wang X, Bando Y, Golberg D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem Soc Rev. 2016;45:3989.

    Article  CAS  Google Scholar 

  22. Kuang Z, Chen Y, Lu Y, Liu L, Hu S, Wen S, Mao Y, Zhang L. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small. 2015;11:1655.

    Article  CAS  Google Scholar 

  23. Tu H, **e K, Lin XH, Zhang RQ, Chen F, Fu Q, Duan B, Zhang LN. Superior strength and highly thermoconductive cellulose/boron nitride film by stretch-induced alignment. J Mater Chem A. 2021;9:10304.

    Article  CAS  Google Scholar 

  24. He JF, Ren M, Dong LZ, Wang YL, Wei XL, Cui B, Wu YL, Zhao YR, Di JT, Li QW. High-temperature-tolerant artificial muscles using poly(p-phenylene benzobisoxazole) composite yarns. Adv Fiber Mater. 2022;4:1256.

    Article  CAS  Google Scholar 

  25. Liu Z, Fan X, Zhang J, Chen L, Tang Y, Kong J, Gu J. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J Mater Sci Technol. 2023;152:16.

    Article  Google Scholar 

  26. Tang L, Tang Y, Zhang J, Lin Y, Kong J, Zhou K, Gu J. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci Bull. 2022;67:2196.

    Article  CAS  Google Scholar 

  27. Wang XJ, Ho V, Segalman RA, Cahill DG. Thermal conductivity of high-modulus polymer fibers. Macromolecules. 2013;46:4937.

    Article  CAS  Google Scholar 

  28. Zhang YZ, Wu K, Fu Q. A structured phase change material with controllable thermoconductive highways enables unparalleled electricity via solar-thermal-electric conversion. Adv Funct Mater. 2022;32:2109255.

    Article  CAS  Google Scholar 

  29. Chen X, Wu K, Zhang Y, Liu D, Li R, Fu Q. Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv Mater. 2022;34: e2206088.

    Article  Google Scholar 

  30. Wang L, Ma Z, Zhang Y, Qiu H, Ruan K, Gu J. Mechanically strong and folding-endurance Ti3C2TX MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy. 2022;4:200.

    Article  CAS  Google Scholar 

  31. Chen Y, Zhang H, Chen J, Guo Y, Jiang P, Gao F, Bao H, Huang X. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano. 2022;16:14323.

    Article  CAS  Google Scholar 

  32. Hu Y, Chen C, Wen Y, Xue Z, Zhou X, Shi D, Hu G-H, **e X. Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Compos Sci Technol. 2021;209: 108760.

    Article  CAS  Google Scholar 

  33. Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016;16:2981.

    Article  CAS  Google Scholar 

  34. Hong H, Jung YH, Lee JS, Jeong C, Kim JU, Lee S, Ryu H, Kim H, Ma Z, Ti Kim. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater. 2019;29:1902575.

    Article  Google Scholar 

  35. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29:76334.

    Article  Google Scholar 

  36. Yang D, Wei QG, Yu LY, Ni YF, Zhang LQ. Natural rubber composites with enhanced thermal conductivity fabricated via modification of boron nitride by covalent and non-covalent interactions. Compos Sci Technol. 2021;202: 108590.

    Article  CAS  Google Scholar 

  37. Li W, Li X, Chang W, Wu J, Liu P, Wang J, Yao X, Yu Z-Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020;13:3048.

    Article  CAS  Google Scholar 

  38. Hao M, Hu Z, Zhang Y, Qian X, Liu L, Yang J, Wang X, Zhi J, Huang Y, Shi X. Facile preparation of ultraviolet resistant “hard armors” on poly(p-phenylene benzobisoxazole) fibers through heat-induced surface treatment. Polym Degrad Stab. 2022;199: 109896.

    Article  CAS  Google Scholar 

  39. Wan Y, **ong P, Liu J, Feng F, Xun X, Gama FM, Zhang Q, Yao F, Yang Z, Luo H, Xu Y. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano. 2021;15:8439.

    Article  CAS  Google Scholar 

  40. Feng S, Yi Y, Chen B, Deng P, Zhou Z, Lu C. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl Mater Interfaces. 2022;14:36060.

    Article  CAS  Google Scholar 

  41. Shuck CE, Sarycheva A, Anayee M, Levitt A, Zhu Y, Uzun S, Balitskiy V, Zahorodna V, Gogotsi O, Gogotsi Y. Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater. 2020;22:1901241.

    Article  CAS  Google Scholar 

  42. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci. 2016;362:406.

    Article  CAS  Google Scholar 

  43. Näslund L-Å, Persson I. XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl Surf Sci. 2022;593: 153442.

    Article  Google Scholar 

  44. Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano. 2022;16:6700.

    Article  CAS  Google Scholar 

  45. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano. 2018;12:4583.

    Article  CAS  Google Scholar 

  46. Zeng F, Chen X, **ao G, Li H, **a S, Wang J. A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano. 2020;14:611.

    Article  CAS  Google Scholar 

  47. Sun C, Huang Y, Shen Q, Wang W, Pan W, Zong P, Yang L, **ng Y, Wan C. Embedding two-dimensional graphene array in ceramic matrix. Sci Adv. 2020;6:1338.

    Article  Google Scholar 

  48. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q. Super-tough MXene-functionalized graphene sheets. Nat Commun. 2020;11:2077.

    Article  CAS  Google Scholar 

  49. Hu D, Wang S, Zhang C, Yi P, Jiang P, Huang X. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021;14:2837.

    Article  CAS  Google Scholar 

  50. Zhang Y, Ma Z, Ruan K, Gu J. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022;15:5601.

    Article  CAS  Google Scholar 

  51. Zhou J, Yu Z, Lv Y, Wang C, Hu P, Liu Y. Highly thermal conductivity of PVA-based nanocomposites by constructing MWCNT-BNNS conductive paths. Compos A. 2022;163: 107195.

    Article  CAS  Google Scholar 

  52. Mazumder MRH, Mathews LD, Mateti S, Salim NV, Parameswaranpillai J, Govindaraj P, Hameed N. Boron nitride based polymer nanocomposites for heat dissipation and thermal management applications. Appl Mater Today. 2022;29: 101672.

    Article  Google Scholar 

  53. Hu BY, Zhang W, Guo H, Xu S, Li Y, Li M, Li BA. Nacre-mimetic elastomer composites with synergistic alignments of boron nitride/graphene oxide towards high through-plane thermal conductivity. Compos A. 2022;156: 106891.

    Article  CAS  Google Scholar 

  54. Fu K, Yang J, Cao C, Zhai Q, Qiao W, Qiao J, Gao H, Zhou Z, Ji J, Li M, Liu C, Wang B, Bai W, Duan H, Xue Y, Tang C. Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites. ACS Appl Mater Interfaces. 2021;13:2853.

    Article  CAS  Google Scholar 

  55. Zhang X, Shi Z, Zhang X, Wang K, Zhao Y, **a H, Wang J. Three dimensional AlN skeleton-reinforced highly oriented graphite flake composites with excellent mechanical and thermophysical properties. Carbon. 2018;131:94.

    Article  CAS  Google Scholar 

  56. Dall’Agnese C, Dall’Agnese Y, Anasori B, Sugimoto W, Mori S. Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New J Chem. 2018;42:16446.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51733008), the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, N. & Xu, J. Mechanically Strong and Flame-Retardant PBO/BN/MXene Nanocomposite Paper with Low Thermal Expansion Coefficient, for Efficient EMI Shielding and Heat Dissipation. Adv. Fiber Mater. 5, 1657–1670 (2023). https://doi.org/10.1007/s42765-023-00298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00298-0

Keywords

Navigation