Log in

Carbon-Based Fibers: Fabrication, Characterization and Application

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In recent years, the carbon-based fibers (CBFs) including carbon fibers, carbon nanotube fibers and graphene fibers have received extensive attention due to excellent thermal, electrical and mechanical properties. Here, the current status of CBFs is reviewed from the following aspects: sprecursors, preparation, performance and application. The precursor systems including acrylonitrile copolymers, pitch, cellulose and lignin, carbon nanotube, graphene and other rare synthetic polymeric precursors. The relationship of preparation method and performance of CBFs is presented. In addition, this review gives the overview of application and future development of CBFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from ref. 34. Copyright 2012, WILEY–VCH

Fig. 4

Reproduced with permission from ref. 58. Copyright 2011, Elsevier Ltd

Fig. 5
Fig. 6
Fig. 7

Reproduced with permission from ref. 98. Copyright 2001, Elsevier Ltd

Fig. 8
Fig. 9
Fig. 10

Reproduced with permission from ref. 111. Copyright 2012, The Royal Society of Chemistry

Fig. 11

Reproduced with permission from ref. 115. Copyright 2017, The Royal Society of Chemistry

Fig. 12

Reproduced with permission from ref. 8. Copyright 2000, The American Association for the Advancement of Science

Fig. 13

Reproduced with permission from ref. 141. Copyright 2011, Elsevier Ltd

Fig. 14
Fig. 15
Fig. 16

Reproduced with permission from ref. 168. Copyright 2015, American Chemical Society

Fig. 17

Reproduced with permission from ref. 171. Copyright 2019, Elsevier Ltd

Fig. 18
Fig. 19
Fig. 20
Fig. 21

Reproduced with permission from ref. 205. Copyright 2018, Society of Chemistry

Fig. 22
Fig. 23
Fig. 24

Reproduced with permission from ref. 229. Copyright 2018, Elsevier B.V

Fig. 25

Reproduced with permission from ref. 23. Copyright 2011, Springer Nature

Fig. 26
Fig. 27

Reproduced with permission from ref. 24. Copyright 2019, IOP Publishing Ltd

Fig. 28
Fig. 29

Reproduced with permission from ref. 28. Copyright 2012, IOP Publishing Ltd

Fig. 30

Reproduced with permission from ref. 251. Copyright 2012, IOP Publishing Ltd

Fig. 31
Fig. 32

Reproduced with permission from ref. 29. Copyright 2017, Royal Society of Chemistry

Fig. 33
Fig. 34
Fig. 35
Fig. 36

Reproduced with permission from ref. 271. Copyright 2016, Nature Publishing Group

Similar content being viewed by others

References

  1. Newcomb BA. Processing, structure, and properties of carbon fibers. Compos Pt A-Appl Sci Manuf 2016;91:262–82.

    Article  CAS  Google Scholar 

  2. Das S, Warren J, West D, Schexnayder SM. Global carbon fiber composites supply chain competitiveness analysis. Knoxville: Oak Ridge National Laboratory, The University of Tennessee; 2016.

    Google Scholar 

  3. Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater 2020;32(5):1902670.

    Article  CAS  Google Scholar 

  4. Iijima S. Helical microtubles of graphitic carbon. Nature 1991;354:56–8.

    Article  CAS  Google Scholar 

  5. Yu M-F, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 2000;84(24):5552–5.

    Article  CAS  Google Scholar 

  6. Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 2001;79(8):1172–4.

    Article  CAS  Google Scholar 

  7. Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 2007;19(20):3358.

    Article  CAS  Google Scholar 

  8. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000;290(5495):1331–4.

    Article  CAS  Google Scholar 

  9. Launois P, Marucci A, Vigolo B, Bernier P, Derre A, Poulin P. Structural characterization of nanotube fibers by X-ray scattering. J Nanosci Nanotechnol 2001;1(2):125–8.

    Article  CAS  Google Scholar 

  10. Jiang K, Li Q, Fan S. Spinning continuous carbon nanotube yarns. Nature 2002;419(6909):801–801.

    Article  CAS  Google Scholar 

  11. Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM. Direct synthesis of long single-walled carbon nanotube strands. Science 2002;296(5569):884–6.

    Article  CAS  Google Scholar 

  12. Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, **e S. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 2009;21(5):603–8.

    Article  CAS  Google Scholar 

  13. Brodie BCXIII. On the atomic weight of graphite. Philos Trans R Soc Lond 1859;149:249–59.

    Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666–9.

    Article  CAS  Google Scholar 

  15. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature 2007;446(7131):60–3.

    Article  CAS  Google Scholar 

  16. Liu F, Ming PM, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 2007;76(6):064120.

    Article  CAS  Google Scholar 

  17. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321(5887):385–8.

    Article  CAS  Google Scholar 

  18. Chen JH, Jang C, **ao SD, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 2008;3(4):206–9.

    Article  CAS  Google Scholar 

  19. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett 2008;8(3):902–7.

    Article  CAS  Google Scholar 

  20. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science 2008;320(5881):1308–1308.

    Article  CAS  Google Scholar 

  21. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010;39(1):228–40.

    Article  CAS  Google Scholar 

  22. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2010;2(7):581–7.

    Article  CAS  Google Scholar 

  23. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2011;2(1):571.

    Article  CAS  Google Scholar 

  24. **n GQ, Zhu WG, Deng YX, Cheng J, Zhang LT, Chung AJ, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol 2019;14(2):168.

    Article  CAS  Google Scholar 

  25. Dong ZL, Jiang CC, Cheng HH, Zhao Y, Shi GQ, Jiang L, Qu LT. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 2012;24(14):1856–61.

    Article  CAS  Google Scholar 

  26. Li XM, Zhao TS, Wang KL, Yang Y, Wei JQ, Kang FY, Wu DH, Zhu HW. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011;27(19):12164–71.

    Article  CAS  Google Scholar 

  27. Cruz-Silva R, Morelos-Gomez A, Kim HI, Jang HK, Tristan F, Vega-Diaz S, Rajukumar LP, Elias AL, Perea-Lopez N, Suhr J, Endo M, Terrones M. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014;8(6):5959–67.

    Article  CAS  Google Scholar 

  28. Jang EY, Carretero-Gonzalez J, Choi A, Kim WJ, Kozlov ME, Kim T, Kang TJ, Baek SJ, Kim DW, Park YW, Baughman RH, Kim YH. Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012;23(23):235601.

    Article  CAS  Google Scholar 

  29. Tian QS, Xu Z, Liu YJ, Fang B, Peng L, ** JB, Lia Z, Gao C. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale 2017;9(34):12335–42.

    Article  CAS  Google Scholar 

  30. Osaka. Studies on Graphite Fiber. Report of the Government Industrial Research Institute. 1961.

  31. Watt W. The effect of length changes during the oxidation of polyacrylonitrile fibers on the young's modulus of carbon fibers. Appl Polym Symposia. 1967;9:215–227.

  32. Ju A, Guang S, Xu H. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon 2013;54:323–35.

    Article  CAS  Google Scholar 

  33. Liu C, Ni X, Chen H, Yu H, Ju A. High molecular weight poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) prepared by mixed solvent polymerization I. effect of monomer feed ratios on polymerization and stabilization. J Polym Res 2019;26(12):276.

    Article  CAS  Google Scholar 

  34. Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 2012;297(6):493–501.

    Article  CAS  Google Scholar 

  35. Tsai JS, Lin CH. Effect of comonomer composition on the properties of polyacrylonitrile precursor and resulting carbon fiber. J Appl Polym Sci 1991;43(4):679–85.

    Article  CAS  Google Scholar 

  36. Ziabicki A. Fundamentals of fibre formation. Nihon Rinsho Jpn J Clin Med 1976;48(33):165–72.

    Google Scholar 

  37. Wade B, Knorr R. Polymerization. 1995.

  38. Gabrielyan GA, Rogovin ZA. Synthesis of analogues of polyacrylonitrile containing thio-amide groups. Polym Sci USSR 1964;6(5):843–4.

    Article  Google Scholar 

  39. Frushour BG. Melting behavior of polyacrylonitrile copolymers. Polym Bull 1984;11(4):375–82.

    Article  CAS  Google Scholar 

  40. Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK, Kamath MG, Lyons KM, Ghoshal S, Pramanik C, Giannuzzi L, Şahin K, Chasiotis I, Kumar S. High strength and high modulus carbon fibers. Carbon 2015;93:81–7.

    Article  CAS  Google Scholar 

  41. Morris EA, Weisenberger MC, Bradley SB, Abdallah MG, Mecham SJ, Pisipati P, McGrath JE. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer 2014;55(25):6471–82.

    Article  CAS  Google Scholar 

  42. Morris EA, Weisenberger MC, Abdallah MG, Vautard F, Grappe H, Ozcan S, Paulauskas FL, Eberle C, Jackson D, Mecham SJ, Naskar AK. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors. Carbon 2016;101:245–52.

    Article  CAS  Google Scholar 

  43. Sawai D, Fujii Y, Kanamoto T. Development of oriented morphology and tensile properties upon superdawing of solution-spun fibers of ultra-high molecular weight poly(acrylonitrile). Polymer 2006;47(12):4445–53.

    Article  CAS  Google Scholar 

  44. Ingildeev D, Hermanutz F, Bredereck K, Effenberger F. Novel cellulose/polymer blend fibers obtained using ionic liquids. Macromol Mater Eng 2012;297(6):585–94.

    Article  CAS  Google Scholar 

  45. Minus ML, Kumar S. The processing, properties, and structure of carbon fibers. Jom 2005;57(2):52–8.

    Article  CAS  Google Scholar 

  46. Ko TH. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. J Appl Polym Sci 1991;43(3):589–600.

    Article  CAS  Google Scholar 

  47. William J, William W. Production of carbon fibres and compositions containing said fibres. Google Patents. No. 3412062, 1968-11-19.

  48. Rašković V, Marinković S. Temperature dependence of processes during oxidation of PAN fibres. Carbon 1975;13(6):535–8.

    Article  Google Scholar 

  49. White SA, Spruiell JE, Paulauskas FL. Fundamental studies of stabilization of polyacrylonitrile precursor, part 1: Effects of thermal and environmental treatments. International SAMPE Symposium and Exhibition (Proceedings). 2006;51.

  50. Paulauskas FL, Spruiell JE. Structure and properties of carbon fibers produced using microwave-assisted plasma technology. Part 1. Int SAMPE Tech Conf 2004;40:203–16.

    Google Scholar 

  51. Dietrich J, Hirt P, Herlinger H. Electron-beam-induced cyclisation to obtain C-fibre precursors from polyacrylonitrile homopolymers. Eur Polymer J 1996;32(5):617–23.

    Article  CAS  Google Scholar 

  52. Goodhew PJ, Clarke AJ, Bailey JE. A review of the fabrication and properties of carbon fibres. Mater Sci Eng 1975;17(1):3–30.

    Article  CAS  Google Scholar 

  53. Tsai JS. Effect of nitrogen atmosphere on the structure and properties of a PAN-based carbon fiber. Text Res J 1994;64:772–4.

    Article  CAS  Google Scholar 

  54. Rašković V, Marinković S. Processes in sulfur dioxide treatment of PAN fibers. Carbon 1978;16(5):351–7.

    Article  Google Scholar 

  55. Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 2003;41(14):2805–12.

    Article  CAS  Google Scholar 

  56. Guigon M, Oberlin A. Heat-treatment of high tensile strength PAN-based carbon fibres: microtexture, structure and mechanical properties. Compos Sci Technol 1986;27(1):1–23.

    Article  CAS  Google Scholar 

  57. Matsumoto T. Mesophase pitch and its carbon fibers. Pure and Applied Chemistry - PURE APPL CHEM 1985;57:1553–62.

    Article  CAS  Google Scholar 

  58. Zhou G, Liu Y, He L, Guo Q, Ye H. Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites. Carbon 2011;49(9):2883–92.

    Article  CAS  Google Scholar 

  59. Ōtani S. On the carbon fiber from the molten pyrolysis products. Carbon 1965;3(1):31–8.

    Article  Google Scholar 

  60. Brooks JD, Taylor GH. The formation of graphitizing carbons from the liquid phase. Carbon 1965;3(2):185–93.

    Article  CAS  Google Scholar 

  61. Özsin G, Pütün AE. Pitch based carbon fiber production. J Facult Eng Arch Gazi Univ 2018;33(4):1433–44.

    Google Scholar 

  62. Chand S. Review carbon fibers for composites. J Mater Sci 2000;35(6):1303–13.

    Article  CAS  Google Scholar 

  63. Kim B-J, Kotegawa T, Eom Y, An J, Hong I-P, Kato O, Nakabayashi K, Miyawaki J, Kim BC, Mochida I, Yoon S-H. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 2016;99:649–57.

    Article  CAS  Google Scholar 

  64. Pérez M, Granda M, Santamarı́a R, Morgan T, Menéndez R. A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch. Fuel 2004;83(9):1257–65.

    Article  CAS  Google Scholar 

  65. Zeng SM, Maeda T, Tokumitsu K, Mondori J, Mochida I. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing—II. Air blowing of coal tar, hydrogenated coal tar, and petroleum pitches. Carbon 1993;31(3):413–9.

    Article  CAS  Google Scholar 

  66. Angier D J, Barnum H W. Neomesophase formation. Google Patents. No. 4184942, 1980-1-22.

  67. Diefendorf R J, Riggs D M. Forming optically anisotropic pitches. Google Patents. No. 4208267, 1980-6-17.

  68. Yamada Y, Imamura T, Shibata M, Arita S, Honda H. Method for the preparation of pitches for spinning carbon fibers. Google Patents. No. 4606808, 1986-8-19.

  69. Seo I, Oono T, Murakami Y. Catalytic process for producing raw material pitch for carbon materials from naphthalene. Google Patents. No. 5066779, 1991-11-19.

  70. Prauchner MJ, Pasa VMD, Otani S, Otani C. Biopitch-based general purpose carbon fibers: processing and properties. Carbon 2005;43(3):591–7.

    Article  CAS  Google Scholar 

  71. Fan Z, Cao M, Yang WB, Zhu SP, Feng ZH. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Mater 2019;34(1):38–43.

    Article  Google Scholar 

  72. Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon 1998;36(4):345–62.

    Article  CAS  Google Scholar 

  73. Liu J, Shimanoe H, Nakabayashi K, Miyawaki J, Ko S, Jeon Y-P, Yoon S-H. Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride. J Ind Eng Chem 2018;67:276–83.

    Article  CAS  Google Scholar 

  74. Mochida I, Toshima H, Korai Y, Matsumoto T. A microscopic study on the oxidative stabilization of a coal-tar-based mesophase pitch and its blends with PVC pitch. J Mater Sci 1989;24(6):2191–8.

    Article  CAS  Google Scholar 

  75. Mochida I, Toshima H, Korai Y, Matsumoto T. Control of molecular orientations in mesophase pitch-based carbon fibre by blending PVC pitch. J Mater Sci 1989;24(1):57–62.

    Article  CAS  Google Scholar 

  76. Mochida I, Shimizu K, Korai Y, Sakai Y, Fujiyama S, Toshima H, Hono T. Mesophase pitch catalytically prepared from anthracene with HF/BF3. Carbon 1992;30(1):55–61.

    Article  CAS  Google Scholar 

  77. Lu S, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch. Carbon 2002;40(12):2109–16.

    Article  CAS  Google Scholar 

  78. Krumpfer J, Giebel E, Frank E, Müller A, Ackermann L-M, Tironi C, Mourgas G, Unold J, Klapper M, Buchmeiser M, Müllen K. Poly(Methyl Vinyl Ketone) as a potential carbon fiber precursor. Chem Mater 2016;29:780–8.

    Article  CAS  Google Scholar 

  79. Özsin G, Pütün AE, Nakabayashi K, Miyawaki J, Yoon S-H. Environmental-friendly production of carbon fiber from isotropic hybrid pitches synthesized from waste biomass and polystyrene with ethylene bottom oil. J Clean Prod 2019;239:118025.

    Article  CAS  Google Scholar 

  80. Korai Y, Nakamura M, Mochida I, Sakai Y, Fujiyama S. Mesophase pitches prepared from methylnaphthalene by the aid of HFBF3. Carbon 1991;29(4):561–7.

    Article  CAS  Google Scholar 

  81. Mochida I, Inaba T, Korai Y, Takeshita K. Carbonization properties of carbonaceous substances oxidized by air blowing—II: acid-catalyzed modification of oxidized residual oil for better anisotropic development. Carbon 1983;21(6):553–8.

    Article  CAS  Google Scholar 

  82. Díez N, Álvarez P, Santamaría R, Blanco C, Menéndez R, Granda M. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Process Technol 2012;93(1):99–104.

    Article  CAS  Google Scholar 

  83. Tagawa T, Miyata T. Size effect on tensile strength of carbon fibers. Mater Sci Eng A 1997;238(2):336–42.

    Article  Google Scholar 

  84. Yoon S-H, Korai Y, Mochida I, Kato I. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning. Carbon 1994;32(2):273–80.

    Article  CAS  Google Scholar 

  85. Cato AD, Edie DD. Flow behavior of mesophase pitch. Carbon 2003;41(7):1411–7.

    Article  CAS  Google Scholar 

  86. Park SH, Kim C, Yang KS. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth Met 2004;143(2):175–9.

    Article  CAS  Google Scholar 

  87. Mochida I, Yoon SH, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles. J Mater Sci 1993;28(9):2331–6.

    Article  CAS  Google Scholar 

  88. Gerard LJ. Chemical reactions in the stabilization of mesophase pitch-based carbon fiber. Carbon 1992;30(3):351–7.

    Article  Google Scholar 

  89. Drbohlav J, Stevenson WTK. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I: the oxidative stabilization process. Carbon 1995;33(5):693–711.

    Article  CAS  Google Scholar 

  90. Drbohlav J, Stevenson WTK. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part II: the carbonization process. Carbon 1995;33(5):713–31.

    Article  CAS  Google Scholar 

  91. Prauchner MJ, Pasa VMD, Molhallem NDS, Otani C, Otani S, Pardini LC. Structural evolution of Eucalyptus tar pitch-based carbons during carbonization. Biomass Bioenerg 2005;28(1):53–61.

    Article  CAS  Google Scholar 

  92. Goma J, Oberlin M. Graphitization of thin carbon films. Thin Solid Films 1980;65(2):221–32.

    Article  CAS  Google Scholar 

  93. Mora E, Blanco C, Prada V, Santamarı́a R, Granda M, Menéndez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon 2002;40(14):2719–25.

    Article  CAS  Google Scholar 

  94. Qin X, Lu Y, **ao H, Wen Y, Yu T. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon 2012;50(12):4459–69.

    Article  CAS  Google Scholar 

  95. Edison T A, Electric lamp. Google Patents. No. 223898, 1880-1-27.

  96. Bacon R, Schalamon WA. High strength and high modulus carbon fibers. Carbon 1968;6(2):211.

    Article  Google Scholar 

  97. Chegolya A, Grinshpan DD, Burd E. Production of regenerated cellulose fibers without carbon disulfide. Text Res J 1989;59:501–6.

    Article  CAS  Google Scholar 

  98. Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H. The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 2001;42(19):8249–64.

    Article  CAS  Google Scholar 

  99. Bredereck K, Hermanutz F. Man–made cellulosics. Rev Prog Color Relat Top 2005;35(1):59–75.

    CAS  Google Scholar 

  100. Ingildeev D, Effenberger F, Bredereck K, Hermanutz F. Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. J Appl Polym Sci 2013;128(6):4141–50.

    Article  CAS  Google Scholar 

  101. Tang MM, Bacon R. Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon 1964;2(3):211–20.

    Article  CAS  Google Scholar 

  102. Bacon R, Tang M M J C. Carbonization of cellulose fibers—II. Physical property study. Carbon. 1964;2(3):221,IN3,223–222,IN4,225.

  103. Brunner PH, Roberts PV. The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 1980;18(3):217–24.

    Article  CAS  Google Scholar 

  104. Tomlinson JB, Theocharis CR. Studies of steam-activated viscose rayon chars. Carbon 1992;30(6):907–11.

    Article  CAS  Google Scholar 

  105. Villaine P, Janin C. Anistropic compositions of cellulose esters; processes for obtaining such compositions; fibers of cellulose esters or cellulose. Google Patents. No. 4839113, 1989-6-13

  106. Souto F, Calado V, Pereira N Jr. Lignin-based carbon fiber: a current overview. Mater Res Express 2018;5(7):072001.

    Article  CAS  Google Scholar 

  107. Sakakibara A. A structural model of softwood lignin. Wood Sci Technol 1980;14(2):89–100.

    Article  CAS  Google Scholar 

  108. Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 2016;116(4):2275–306.

    Article  CAS  Google Scholar 

  109. Yun SI, Kim SH, Kim DW, Kim YA, Kim B-H. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 2019;149:637–45.

    Article  CAS  Google Scholar 

  110. Roman J, Neri W, Derré A, Poulin P. Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications. Carbon 2019;145:556–64.

    Article  CAS  Google Scholar 

  111. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK. Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 2012;14(12):3295–303.

    Article  CAS  Google Scholar 

  112. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 2002;10(1–2):39–48.

    Article  CAS  Google Scholar 

  113. Braun JL, Holtman KM, Kadla JF. Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon 2005;43(2):385–94.

    Article  CAS  Google Scholar 

  114. Otani S, Fukuoka Y, Igarashi B, Sasaki K. Method for producing carbonized lignin fiber. Google Patents. No. 3461082, 1969-8-12.

  115. Fang W, Yang S, Wang XL, Yuan TQ, Sun RC. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 2017;19(8):1794–827.

    Article  CAS  Google Scholar 

  116. Seo DK, Jeun JP, Kim HB, Kang PH. Preoaration and characterization of the carbon nanofiber mat produced from electrospun PAN/lignin precursors by electron beam irradiation. Rev Adv Mater Sci 2011;28(1):31–4.

    CAS  Google Scholar 

  117. Choi DI, Lee JN, Song J, Kang PH, Park JK, Lee YM. Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes. J Solid State Electrochem 2013;17(9):2471–5.

    Article  CAS  Google Scholar 

  118. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 2014;53(21):5262–98.

    Article  CAS  Google Scholar 

  119. Thunga M, Chen K, Grewell D, Kessler MR. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 2014;68:159–66.

    Article  CAS  Google Scholar 

  120. Nowak AP, Hagberg J, Leijonmarck S, Schweinebarth H, Baker D, Uhlin A, Tomani P, Lindbergh G. Lignin-based carbon fibers for renewable and multifunctional lithium-ion battery electrodes. Holzforschung 2018;72(2):81–90.

    Article  CAS  Google Scholar 

  121. Kubo S, Uraki Y, Sano Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pul**. Carbon 1998;36(7–8):1119–24.

    Article  CAS  Google Scholar 

  122. Norberg I, Nordstrom Y, Drougge R, Gellerstedt G, Sjoholm E. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J Appl Polym Sci 2013;128(6):3824–30.

    Article  CAS  Google Scholar 

  123. Dai Z, Shi XJ, Liu H, Li HM, Han Y, Zhou JH. High-strength lignin-based carbon fibers via a low-energy method. RSC Adv 2018;8(3):1218–24.

    Article  CAS  Google Scholar 

  124. Sagues W, Jain A, Brown D, Aggarwal S, Suarez A, Kollman M, Park S, Argyropoulos D. Are lignin-derived carbon fibers graphitic enough? Green Chem 2019;21:4253–65.

    Article  CAS  Google Scholar 

  125. Yang YC, Wang TJ, Wang SD, Cong X, Zhang SL, Zhang M, Luan JS, Wang GB. Strong interface construction of carbon fiber-reinforced PEEK composites: an efficient method for modifying carbon fiber with crystalline PEEK. Macromol Rapid Commun 2020;41(24):2000001.

    Article  CAS  Google Scholar 

  126. Ni X, Chen H, Liu C, Zeng F, Yu H, Ju A. A freestanding nitrogen-doped carbon nanofiber/MoS2 nanoflowers with expanded interlayer for long cycle-life lithium-ion batteries. J Alloys Comp 2020;818:152835.

    Article  CAS  Google Scholar 

  127. Ni X, Cui Z, Jiang N, Chen H, Wu Q, Ju A, Zhu M. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density. J Mater Sci Technol 2021;77:169–77.

    Article  CAS  Google Scholar 

  128. Ni X, Cui Z, Luo H, Chen H, Liu C, Wu Q, Ju A. Hollow multi-nanochannel carbon nanofibers@MoSe2 nanosheets composite as flexible anodes for high performance lithium-ion batteries. Chem Eng J 2021;404:126249.

    Article  CAS  Google Scholar 

  129. Raza F, Ni X, Wang J, Liu S, Jiang Z, Liu C, Chen H, Farooq A, Ju A. Ultrathin honeycomb-like MnO2 on hollow carbon nanofiber networks as binder-free electrode for flexible symmetric all-solid-state supercapacitors. J Energy Storage 2020;30:101467.

    Article  Google Scholar 

  130. Yue Y, Liu K, Li M, Hu X. Thermal manipulation of carbon nanotube fiber by mechanical stretching. Carbon 2014;77:973–9.

    Article  CAS  Google Scholar 

  131. Dalton AB, Collins S, Razal J, Munoz E, Ebron VH, Kim BG, Coleman JN, Ferraris JP, Baughman RH. Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J Mater Chem 2004;14(1):1–3.

    Article  CAS  Google Scholar 

  132. Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang YH, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004;305(5689):1447–50.

    Article  CAS  Google Scholar 

  133. Kozlov ME, Capps RC, Sampson WM, Ebron VH, Ferraris JP, Baughman RH. Spinning solid and hollow polymer-free carbon nanotube fibers. Adv Mater 2005;17(5):614.

    Article  CAS  Google Scholar 

  134. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013;339(6116):182–6.

    Article  CAS  Google Scholar 

  135. Zhang SJ, Koziol KKK, Kinloch IA, Windle AH. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 2008;4(8):1217–22.

    Article  CAS  Google Scholar 

  136. Tsentalovich DE, Headrick RJ, Mirri F, Hao JL, Behabtu N, Young CC, Pasquali M. Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl Mater Interfaces 2017;9(41):36189–98.

    Article  CAS  Google Scholar 

  137. Lee J, Lee DM, Jung Y, Park J, Lee HS, Kim YK, Park CR, Jeong HS, Kim SM. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat Commun 2019;10(1):2962.

    Article  Google Scholar 

  138. Zhang XB, Jiang KL, Teng C, Liu P, Zhang L, Kong J, Zhang TH, Li QQ, Fan SS. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 2006;18(12):1505.

    Article  CAS  Google Scholar 

  139. Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004;306(5700):1358–61.

    Article  CAS  Google Scholar 

  140. Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater 2006;18(23):3160.

    Article  CAS  Google Scholar 

  141. Zhu C, Cheng C, He YH, Wang L, Wong TL, Fung KK, Wang N. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon 2011;49(15):4996–5001.

    Article  CAS  Google Scholar 

  142. Inoue Y, Kakihata K, Hirono Y, Horie T, Ishida A, Mimura H. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl Phys Lett 2008;92(21):213113.

    Article  CAS  Google Scholar 

  143. Jia JJ, Zhao JN, Xu G, Di JT, Yong ZZ, Tao YY, Fang CO, Zhang ZG, Zhang XH, Zheng LX, Li QW. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 2011;49(4):1333–9.

    Article  CAS  Google Scholar 

  144. Ghemes A, Minami Y, Muramatsu J, Okada M, Mimura H, Inoue Y. Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays. Carbon 2012;50(12):4579–87.

    Article  CAS  Google Scholar 

  145. Liu K, Sun YH, Zhou RF, Zhu HY, Wang JP, Liu L, Fan SS, Jiang KL. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 2010;21(4):045708.

    Article  CAS  Google Scholar 

  146. Ryu S, Lee Y, Hwang JW, Hong S, Kim C, Park TG, Lee H, Hong SH. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 2011;23(17):1971–5.

    Article  CAS  Google Scholar 

  147. Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano 2011;5(2):985–93.

    Article  CAS  Google Scholar 

  148. O’Brien NP, McCarthy MA, Curtin WA. Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 2013;51:173–84.

    Article  CAS  Google Scholar 

  149. Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, Clapp TG, DePaula RF, Liao XZ, Zhao YH, Zheng LX, Peterson DE, Zhu YT. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 2007;19(23):4198.

    Article  CAS  Google Scholar 

  150. Fang C, Zhao JN, Jia JJ, Zhang ZG, Zhang XH, Li QW. Enhanced carbon nanotube fibers by polyimide. Appl Phys Lett 2010;97(18):181906.

    Article  CAS  Google Scholar 

  151. Alvarez NT, Miller P, Haase M, Kienzle N, Zhang L, Schulz MJ, Shanov V. Carbon nanotube assembly at near-industrial natural-fiber spinning rates. Carbon 2015;86:350–7.

    Article  CAS  Google Scholar 

  152. Atkinson KR, Hawkins SC, Huynh C, Skourtis C, Dai J, Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Baughman RH. Multifunctional carbon nanotube yarns and transparent sheets: fabrication, properties, and applications. Physica B 2007;394(2):339–43.

    Article  CAS  Google Scholar 

  153. Miao MH. Electrical conductivity of pure carbon nanotube yarns. Carbon 2011;49(12):3755–61.

    Article  CAS  Google Scholar 

  154. Wang K, Li M, Liu YN, Gu YZ, Li QW, Zhang ZG. Effect of acidification conditions on the properties of carbon nanotube fibers. Appl Surf Sci 2014;292:469–74.

    Article  CAS  Google Scholar 

  155. Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004;304(5668):276–8.

    Article  CAS  Google Scholar 

  156. Barnard JS, Paukner C, Koziol KK. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale 2016;8(39):17262–70.

    Article  CAS  Google Scholar 

  157. Sundaram RM, Koziol KKK, Windle AH. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater 2011;23(43):5064–8.

    Article  CAS  Google Scholar 

  158. Lee SH, Park J, Kim HR, Lee J, Lee KH. Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process. RSC Adv 2015;5(52):41894–900.

    Article  CAS  Google Scholar 

  159. Motta M, Li YL, Kinloch I, Windle A. Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett 2005;5(8):1529–33.

    Article  CAS  Google Scholar 

  160. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science 2007;318(5858):1892–5.

    Article  CAS  Google Scholar 

  161. Im YO, Lee SH, Kim T, Park J, Lee J, Lee KH. Utilization of carboxylic functional groups generated during purification of carbon nanotube fiber for its strength improvement. Appl Surf Sci 2017;392:342–9.

    Article  CAS  Google Scholar 

  162. Liu P, Li YM, Xu YF, Bao LK, Wang L, Pan J, Zhang ZT, Sun XM, Peng HS. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure. Small 2018;14(4):1702926.

    Article  CAS  Google Scholar 

  163. Li WY, Zhao JN, Xue Y, Ren XQ, Zhang XH, Li QW. Merge multiple carbon nanotube fibers into a robust yarn. Carbon 2019;145:266–72.

    Article  CAS  Google Scholar 

  164. Ma WJ, Liu LQ, Zhang Z, Yang R, Liu G, Zhang TH, An XF, Yi XS, Ren Y, Niu ZQ, Li JZ, Dong HB, Zhou WY, Ajayan PM, **e SS. High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett 2009;9(8):2855–61.

    Article  CAS  Google Scholar 

  165. Feng J-M, Wang R, Li Y-L, Zhong X-H, Cui L, Guo Q-J, Hou F. One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process. Carbon 2010;48(13):3817–24.

    Article  CAS  Google Scholar 

  166. Song L, Toth G, Vajtai R, Endo M, Ajayan PM. Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon 2012;50(15):5521–4.

    Article  CAS  Google Scholar 

  167. Mora RJ, Vilatela JJ, Windle AH. Properties of composites of carbon nanotube fibres. Compos Sci Technol 2009;69(10):1558–63.

    Article  CAS  Google Scholar 

  168. Zhou G, Wang YQ, Byun JH, Yi JW, Yoon SS, Cha HJ, Lee JU, Oh Y, Jung BM, Moon HJ, Chou TW. High-strength single-walled carbon nanotube/permalloy nanoparticle/poly(vinyl alcohol) multifunctional nanocomposite fiber. ACS Nano 2015;9(11):11414–21.

    Article  CAS  Google Scholar 

  169. Le Wu M, Chen Y, Zhang L, Zhan H, Qjang L, Wang JN. High-performance carbon nanotube/polymer composite fiber from layer-by-layer deposition. ACS Appl Mater Interfaces 2016;8(12):8137–44.

    Article  CAS  Google Scholar 

  170. Zhang SL, Hao A, Nguyen N, Oluwalowo A, Liu Z, Dessureault Y, Park JG, Liang R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon 2019;144:628–38.

    Article  CAS  Google Scholar 

  171. Feng L, Fu QG, Song Q, Yang YL, Zuo Y, Suo GQ, Hou XJ, Zhang L, Ye XH. A novel continuous carbon nanotube fiber/carbon composite by electrified preform heating chemical vapor infiltration. Carbon 2020;157:640–8.

    Article  CAS  Google Scholar 

  172. Han BS, Guo EY, Xue X, Zhao ZY, Luo LS, Qu HT, Niu T, Xu YJ, Hou HL. Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 2017;123:593–604.

    Article  CAS  Google Scholar 

  173. Rho H, Park M, Park M, Park J, Han J, Lee A, Bae S, Kim TW, Ha JS, Kim SM, Lee DS, Lee SH. Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density. NPG Asia Mater 2018;10:146–55.

    Article  CAS  Google Scholar 

  174. Zhong XH, Wang R, Wen YY. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing. Phys Chem Chem Phys 2013;15(11):3861–5.

    Article  CAS  Google Scholar 

  175. Zhong XH, Wang R, Wen YY, Li YL. Carbon nanotube and graphene multiple-thread yarns. Nanoscale 2013;5(3):1183–7.

    Article  CAS  Google Scholar 

  176. Foroughi J, Spinks GM, Antiohos D, Mirabedini A, Gambhir S, Wallace GG, Ghorbani SR, Peleckis G, Kozlov ME, Lima MD, Baughman RH. Highly conductive carbon nanotube-graphene hybrid yarn. Adv Func Mater 2014;24(37):5859–65.

    Article  CAS  Google Scholar 

  177. Lepak-Kuc S, Milowska KZ, Boncel S, Szybowicz M, Dychalska A, Jozwik I, Koziol KK, Jakubowska M, Lekawa-Raus A. Highly conductive doped hybrid carbon nanotube-graphene wires. ACS Appl Mater Interfaces 2019;11(36):33207–20.

    Article  CAS  Google Scholar 

  178. Bernholc J, Brenner D, Nardelli MB, Meunier V, Roland C. Mechanical and electrical properties of nanotubes. Ann Rev Mater Res 2002;32(1):347–75.

    Article  CAS  Google Scholar 

  179. Zhao Y, Wei JQ, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 2011;1(1):83.

    Article  CAS  Google Scholar 

  180. Alvarenga J, Jarosz PR, Schauerman CM, Moses BT, Landi BJ, Cress CD, Raffaelle RP. High conductivity carbon nanotube wires from radial densification and ionic do**. Appl Phys Lett 2010;97(18):182106.

    Article  CAS  Google Scholar 

  181. Guo FM, Li C, Wei JQ, Xu RQ, Zhang ZL, Cui X, Wang KL, Wu DH. Fabrication of highly conductive carbon nanotube fibers for electrical application. Mater Res Express 2015;2(9):095604.

    Article  CAS  Google Scholar 

  182. Lekawa-Raus A, Haladyj P, Koziol K. Carbon nanotube fiber-silver hybrid electrical conductors. Mater Lett 2014;133:186–9.

    Article  CAS  Google Scholar 

  183. Tran TQ, Lee JKY, Chinnappan A, Jayathilaka W, Ji DX, Kumar VV, Ramakrishna S. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods. J Mater Sci Technol 2020;40:99–106.

    Article  Google Scholar 

  184. Zu M, Li QW, Wang GJ, Byun JH, Chou TW. Carbon nanotube fiber based stretchable conductor. Adv Func Mater 2013;23(7):789–93.

    Article  CAS  Google Scholar 

  185. Guo H, Dewey O, McCorkle L, Meador M, Pasquali M. Polyimide aerogels as lightweight dielectric insulators for carbon nanotube cables. ACS Appl Polymer Mater 2019;1:1680–8.

    Article  CAS  Google Scholar 

  186. Zhao HB, Zhang YY, Bradford PD, Zhou QA, Jia QX, Yuan FG, Zhu YT. Carbon nanotube yarn strain sensors. Nanotechnology 2010;21(30):305502.

    Article  Google Scholar 

  187. Li YB, Shang YY, He XD, Peng QY, Du SY, Shi EZ, Wu ST, Li Z, Li PX, Cao AY. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano 2013;7(9):8128–35.

    Article  CAS  Google Scholar 

  188. Wang ZF, Huang Y, Sun JF, Huang Y, Hu H, Jiang RJ, Gai WM, Li GM, Zhi CY. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 2016;8(37):24837–43.

    Article  CAS  Google Scholar 

  189. Sim HJ, Choi C, Kim SH, Kim KM, Lee CJ, Kim YT, Lepro X, Baughman RH, Kim SJ. Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci Rep 2016;6:35153.

    Article  CAS  Google Scholar 

  190. Abot JL, Kiyono CY, Thomas GP, Silva ECN. Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response. Smart Mater Struct 2015;24(7):075018.

    Article  CAS  Google Scholar 

  191. Wei Y, Lin XY, Jiang KL, Liu P, Li QQ, Fan SS. Thermoacoustic chips with carbon nanotube thin yarn arrays. Nano Lett 2013;13(10):4795–801.

    Article  CAS  Google Scholar 

  192. Sibinski M, Jakubowska M, Sloma M. Flexible temperature sensors on fibers. Sensors 2010;10(9):7934–46.

    Article  CAS  Google Scholar 

  193. Guinovart T, Parrilla M, Crespo GA, Rius FX, Andrade FJ. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst 2013;138(18):5208–15.

    Article  CAS  Google Scholar 

  194. Schmidt AC, Wang X, Zhu Y, Sombers LA. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. ACS Nano 2013;7(9):7864–73.

    Article  CAS  Google Scholar 

  195. Jacobs CB, Ivanov IN, Nguyen MD, Zestos AG, Venton BJ. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes. Anal Chem 2014;86(12):5721–7.

    Article  CAS  Google Scholar 

  196. Yang C, Trikantzopoulos E, Nguyen MD, Jacobs CB, Wang Y, Mahjouri-Samani M, Ivanov IN, Venton BJ. Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. Acs Sensors 2016;1(5):508–15.

    Article  CAS  Google Scholar 

  197. Yang C, Wang Y, Jacobs CB, Ivanov IN, Venton BJ. O-2 plasma etching and antistatic gun surface modifications for CNT yarn microelectrode improve sensitivity and antifouling properties. Anal Chem 2017;89(10):5605–11.

    Article  CAS  Google Scholar 

  198. Yang C, Trikantzopoulos E, Jacobs CB, Venton BJ. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties. Anal Chim Acta 2017;965:1–8.

    Article  CAS  Google Scholar 

  199. Al-Graiti W, Yue Z, Foroughi J, Huang X-F, Wallace G, Baughman R, Chen J. Probe sensor using nanostructured multi-walled carbon nanotube yarn for selective and sensitive detection of dopamine. Sensors 2017;17(4):884.

    Article  CAS  Google Scholar 

  200. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang SL, Mirfakhrai T, Madden JDW, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science 2011;334(6055):494–7.

    Article  CAS  Google Scholar 

  201. Lee JA, Li N, Haines CS, Kim KJ, Lepro X, Ovalle-Robles R, Kim SJ, Baughman RH. Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv Mater 2017;29(31):1700870.

    Article  CAS  Google Scholar 

  202. Kim KJ, Hyeon JS, Kim H, Mun TJ, Haines CS, Li N, Baughman RH, Kim SJ. Enhancing the work capacity of electrochemical artificial muscles by coiling plies of twist-released carbon nanotube yarns. ACS Appl Mater Interfaces 2019;11(14):13533–7.

    Article  CAS  Google Scholar 

  203. Lima MD, Li N, de Andrade MJ, Fang SL, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim SJ, Chen YS, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JDW, Voit WE, Galvao DS, Baughman RH. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012;338(6109):928–32.

    Article  CAS  Google Scholar 

  204. Kwon CH, Chun K-Y, Kim SH, Lee J-H, Kim J-H, Lima MD, Baughman RH, Kim SJ. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy. Nanoscale 2015;7(6):2489–96.

    Article  CAS  Google Scholar 

  205. Song YH, Zhou SS, ** KY, Qiao J, Li D, Xu C, Hu DM, Di JT, Li M, Zhang ZG, Li QW. Hierarchical carbon nanotube composite yarn muscles. Nanoscale 2018;10(8):4077–84.

    Article  CAS  Google Scholar 

  206. Lee JA, Shin MK, Kim SH, Kim SJ, Spinks GM, Wallace GG, Ovalle-Robles R, Lima MD, Kozlov ME, Baughman RH. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application. ACS Nano 2012;6(1):327–34.

    Article  CAS  Google Scholar 

  207. Wang K, Meng QH, Zhang YJ, Wei ZX, Miao MH. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 2013;25(10):1494–8.

    Article  CAS  Google Scholar 

  208. Su F, Miao M, Niu H, Wei Z. Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors. ACS Appl Mater Interfaces 2014;6(4):2553–60.

    Article  CAS  Google Scholar 

  209. Choi C, Lee JA, Choi AY, Kim YT, Lepro X, Lima MD, Baughman RH, Kim SJ. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater 2014;26(13):2059–65.

    Article  CAS  Google Scholar 

  210. Kim JH, Choi C, Lee JM, de Andrade MJ, Baughman RH, Kim SJ. Ag/MnO2 composite sheath-core structured yarn supercapacitors. Sci Rep 2018;8:13309.

    Article  CAS  Google Scholar 

  211. Su FH, Miao MH. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014;25(13):135401.

    Article  CAS  Google Scholar 

  212. Su FH, Lv XM, Miao MH. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 2015;11(7):854–61.

    Article  CAS  Google Scholar 

  213. Wang ZY, Qin S, Seyedin S, Zhang JZ, Wang JT, Levitt A, Li N, Haines C, Ovalle-Robles R, Lei WW, Gogotsi Y, Baughman RH, Razal JM. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018;14(37):1802225.

    Article  CAS  Google Scholar 

  214. Zhang DH, Miao MH, Niu HT, Wei ZX. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 2014;8(5):4571–9.

    Article  CAS  Google Scholar 

  215. Kim KM, Lee JA, Sim HJ, Kim KA, Jalili R, Spinks GM, Kim SJ. Shape-engineerable composite fibers and their supercapacitor application. Nanoscale 2016;8(4):1910–4.

    Article  CAS  Google Scholar 

  216. Kou L, Huang TQ, Zheng BN, Han Y, Zhao XL, Gopalsamy K, Sun HY, Gao C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 2014;5(1):3754.

    Article  CAS  Google Scholar 

  217. Son W, Chun S, Lee JM, Lee Y, Park J, Suh D, Lee DW, Jung H, Kim YJ, Kim Y, Jeong SM, Lim SK, Choi C. Highly twisted supercoils for superelastic multi-functional fibres. Nat Commun 2019;10:11.

    Article  CAS  Google Scholar 

  218. Choi C, Kim KM, Kim KJ, Lepro X, Spinks GM, Baughman RH, Kim SJ. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun 2016;7(1):13811.

    Article  CAS  Google Scholar 

  219. Zheng Q, Shi BJ, Li Z, Wang ZL. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 2017;4(7):1700029.

    Article  CAS  Google Scholar 

  220. Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di JT, Oh YJ, Oviedo JP, Bykova J, Fang SL, Jiang N, Liu ZF, Wang R, Kumar P, Qiao R, Priya S, Cho K, Kim M, Lucas MS, Drummy LF, Maruyama B, Lee DY, Lepro X, Gao EL, Albarq D, Ovalle-Robles R, Kim SJ, Baughman RH. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017;357(6353):773–8.

    Article  CAS  Google Scholar 

  221. Choi J, Jung Y, Yang SJ, Oh JY, Oh J, Jo K, Son JG, Moon SE, Park CR, Kim H. Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano 2017;11(8):7608–14.

    Article  CAS  Google Scholar 

  222. Zhang WM, Minett AI, Gao M, Zhao J, Razal JM, Wallace GG, Romeo T, Chen J. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Adv Energy Mater 2011;1(4):671–7.

    Article  CAS  Google Scholar 

  223. Chen T, Qiu LB, Cai ZB, Gong F, Yang ZB, Wang ZS, Peng HS. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett 2012;12(5):2568–72.

    Article  CAS  Google Scholar 

  224. Liu DY, Zhao MY, Li Y, Bian ZQ, Zhang LH, Shang YY, **a XY, Zhang S, Yun DQ, Liu ZW, Cao AY, Huang CH. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 2012;6(12):11027–34.

    Article  CAS  Google Scholar 

  225. Zhang S, Ji CY, Bian ZQ, Yu PR, Zhang LH, Liu DY, Shi EZ, Shang YY, Peng HT, Cheng Q, Wang D, Huang CH, Cao AY. Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 2012;6(8):7191–8.

    Article  CAS  Google Scholar 

  226. Yu XH, Pan J, Deng J, Zhou J, Sun XM, Peng HS. A novel photoelectric conversion yarn by integrating photomechanical actuation and the electrostatic effect. Adv Mater 2016;28(48):10744.

    Article  CAS  Google Scholar 

  227. Linares RV, Li Z, Sarp S, Bucs SS, Amy G, Vrouwenvelder JS. Forward osmosis niches in seawater desalination and wastewater reuse. Water Res 2014;66:122–39.

    Article  CAS  Google Scholar 

  228. Fan XF, Liu YM, Quan X, Chen S. Highly permeable thin-film composite forward osmosis membrane based on carbon nanotube hollow fiber scaffold with electrically enhanced fouling resistance. Environ Sci Technol 2018;52(3):1444–52.

    Article  CAS  Google Scholar 

  229. Fan XF, Liu YM, Quan X. A novel reduced graphene oxide/carbon nanotube hollow fiber membrane with high forward osmosis performance. Desalination 2019;451:117–24.

    Article  CAS  Google Scholar 

  230. Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano 2011;5(4):2908–15.

    Article  CAS  Google Scholar 

  231. Cong HP, Ren XC, Wang P, Yu SH. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2012;2(1):613.

    Article  CAS  Google Scholar 

  232. Xu Z, Sun HY, Zhao XL, Gao C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 2013;25(2):188–93.

    Article  CAS  Google Scholar 

  233. Chen L, He YL, Chai SG, Qiang H, Chen F, Fu Q. Toward high performance graphene fibers. Nanoscale 2013;5(13):5809–15.

    Article  CAS  Google Scholar 

  234. **ang CS, Young CC, Wang X, Yan Z, Hwang CC, Cerioti G, Lin J, Kono J, Pasquali M, Tour JM. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater 2013;25(33):4592–7.

    Article  CAS  Google Scholar 

  235. Cao J, Zhang YY, Men CL, Sun YY, Wang ZN, Zhang XT, Li QW. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions. ACS Nano 2014;8(5):4325–33.

    Article  CAS  Google Scholar 

  236. Aboutalebi SH, Jalili R, Esrafilzadeh D, Salari M, Gholamvand Z, Yamini SA, Konstantinov K, Shepherd RL, Chen J, Moulton SE, Innis PC, Minett AI, Razal JM, Wallace GG. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 2014;8(3):2456–66.

    Article  CAS  Google Scholar 

  237. Ma WG, Liu YJ, Yan S, Miao TT, Shi SY, Xu Z, Zhang X, Gao C. Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties. Nano Res 2018;11(2):741–50.

    Article  CAS  Google Scholar 

  238. Wu G, Tan PF, Wu XJ, Peng L, Cheng HY, Wang CF, Chen W, Yu ZY, Chen S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Func Mater 2017;27(36):1702493.

    Article  CAS  Google Scholar 

  239. Jalili R, Aboutalebi SH, Esrafilzadeh D, Shepherd RL, Chen J, Aminorroaya-Yamini S, Konstantinov K, Minett AI, Razal JM, Wallace GG. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Func Mater 2013;23(43):5345–54.

    Article  CAS  Google Scholar 

  240. Kou L, Gao C. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 2013;5(10):4370–8.

    Article  CAS  Google Scholar 

  241. Zhang YY, Peng JS, Li MZ, Saiz E, Wolf SE, Cheng QF. Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 2018;12(9):8901–8.

    Article  CAS  Google Scholar 

  242. Huang GJ, Hou CY, Shao YL, Wang HZ, Zhang QH, Li YG, Zhu MF. Highly strong and elastic graphene fibres prepared from universal graphene oxide precursors. Sci Rep 2014;4(1):4248.

    Article  CAS  Google Scholar 

  243. Chen SH, Ma WJ, Cheng YH, Weng Z, Sun B, Wang L, Chen WP, Li F, Zhu MF, Cheng HM. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015;15:642–53.

    Article  CAS  Google Scholar 

  244. Zhao Y, Jiang CC, Hu CG, Dong ZL, Xue JL, Meng YN, Zheng N, Chen PW, Qu LT. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 2013;7(3):2406–12.

    Article  CAS  Google Scholar 

  245. **n GQ, Yao TK, Sun HT, Scott SM, Shao DL, Wang GK, Lian J. Highly thermally conductive and mechanically strong graphene fibers. Science 2015;349(6252):1083–7.

    Article  CAS  Google Scholar 

  246. Xu Z, Liu YJ, Zhao XL, Peng L, Sun HY, Xu Y, Ren XB, ** CH, Xu P, Wang M, Gao C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater 2016;28(30):6449.

    Article  CAS  Google Scholar 

  247. Liu YJ, Xu Z, Zhan JM, Li PG, Gao C. Superb electrically conductive graphene fibers via do** strategy. Adv Mater 2016;28(36):7941–7.

    Article  CAS  Google Scholar 

  248. Pan H, Wang DW, Peng QF, Ma J, Meng X, Zhang YP, Ma YN, Zhu SM, Zhang D. High-performance microsupercapacitors based on bioinspired graphene microfibers. ACS Appl Mater Interfaces 2018;10(12):10157–64.

    Article  CAS  Google Scholar 

  249. Sheng LZ, Wei T, Liang Y, Jiang LL, Qu LT, Fan ZJ. Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets. Carbon 2017;120:17–22.

    Article  CAS  Google Scholar 

  250. Ma T, Gao HL, Cong HP, Yao HB, Wu L, Yu ZY, Chen SM, Yu SH. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv Mater 2018;30(15):1706435.

    Article  CAS  Google Scholar 

  251. Li X, Sun PZ, Fan LL, Zhu M, Wang KL, Zhong ML, Wei JQ, Wu DH, Cheng Y, Zhu HW. Multifunctional graphene woven fabrics. Sci Rep 2012;2(1):395.

    Article  CAS  Google Scholar 

  252. **ao M, Kong T, Wang W, Song Q, Zhang D, Ma QQ, Cheng GS. Interconnected graphene networks with uniform geometry for flexible conductors. Adv Func Mater 2015;25(39):6165–72.

    Article  CAS  Google Scholar 

  253. Hua CF, Shang YY, Li XY, Hu XY, Wang Y, Wang XC, Zhang YJ, Li XJ, Duan HL, Cao AY. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale 2016;8(20):10659–68.

    Article  CAS  Google Scholar 

  254. Wang R, Xu Z, Zhuang JH, Liu Z, Peng L, Li Z, Liu YJ, Gao WW, Gao C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv Electron Mater 2017;3(2):1600425.

    Article  CAS  Google Scholar 

  255. Feng LC, Chang Y, Zhong J, Jia DC. Dry spin graphene oxide fibers: mechanical/electrical properties and microstructure evolution. Sci Rep 2018;8(1):10803.

    Article  CAS  Google Scholar 

  256. Meng YN, Zhao Y, Hu CG, Cheng HH, Hu Y, Zhang ZP, Shi GQ, Qu LT. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 2013;25(16):2326–31.

    Article  CAS  Google Scholar 

  257. Zhao XL, Zheng BN, Huang TQ, Gao C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 2015;7(21):9399–404.

    Article  CAS  Google Scholar 

  258. Zheng BN, Huang TQ, Kou L, Zhao XL, Gopalsamy K, Gao C. Graphene fiber-based asymmetric micro-supercapacitors. J Mater Chem A 2014;2(25):9736–43.

    Article  CAS  Google Scholar 

  259. Yu DS, Goh K, Wang H, Wei L, Jiang WC, Zhang Q, Dai LM, Chen Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 2014;9(7):555–62.

    Article  CAS  Google Scholar 

  260. Guan TX, Shen LM, Bao NZ. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor. Ind Eng Chem Res 2019;58(37):17338–45.

    Article  CAS  Google Scholar 

  261. Yang ZB, Sun H, Chen T, Qiu LB, Luo YF, Peng HS. Photovoltaic wire derived from a graphene composite fiber achieving an 84.5% energy conversion efficiency. Angew Chem-Int Edit 2013;52(29):7545–8.

    Article  CAS  Google Scholar 

  262. Chen T, Dai LM. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew Chem-Int Edit 2015;54(49):14947–50.

    Article  CAS  Google Scholar 

  263. Chong WG, Huang JQ, Xu ZL, Qin XY, Wang XY, Kim JK. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv Func Mater 2017;27(4):1604815.

    Article  CAS  Google Scholar 

  264. Chong WG, **ao F, Yao SS, Cui J, Sadighi Z, Wu JX, Ihsan-Ul-Haq M, Shao MH, Kim JK. Nitrogen-doped graphene fiber webs for multi-battery energy storage. Nanoscale 2019;11(13):6334–42.

    Article  CAS  Google Scholar 

  265. Cheng HH, Liu J, Zhao Y, Hu CG, Zhang ZP, Chen N, Jiang L, Qu LT. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem-Int Edit 2013;52(40):10482–6.

    Article  CAS  Google Scholar 

  266. Cheng HH, Hu Y, Zhao F, Dong ZL, Wang YH, Chen N, Zhang ZP, Qu LT. Moisture-activated torsional graphene-fiber motor. Adv Mater 2014;26(18):2909–13.

    Article  CAS  Google Scholar 

  267. Cheng HH, Liang Y, Zhao F, Hu Y, Dong ZL, Jiang L, Qu LT. Functional graphene springs for responsive actuation. Nanoscale 2014;6(19):11052–6.

    Article  CAS  Google Scholar 

  268. You X, Yang JS, Wang MM, Huh JB, Ding YS, Zhang XY, Dong SM. Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion. 2D Mater 2020;7(1):015025.

    Article  CAS  Google Scholar 

  269. Zeng JF, Xu RY, Jiao L, Wang YZ, Chen LW, Windle CD, Ding XT, Zhang ZP, Han Q, Qu LT. A 3D-graphene fiber electrode embedded with nitrogen-rich-carbon-coated ZIF-67 for the ultrasensitive detection of adrenaline. J Mat Chem B 2019;7(35):5291–5.

    Article  CAS  Google Scholar 

  270. Seyedin S, Romano MS, Minett AI, Razal JM. Towards the knittability of graphene oxide fibres. Sci Rep 2015;5(1):14946.

    Article  CAS  Google Scholar 

  271. Li Z, Xu Z, Liu Y, Wang R, Gao C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat Commun 2016;7(1):13684.

    Article  CAS  Google Scholar 

  272. Horikiri S, Iseki J, Minobe M. Process for production of carbon fiber. Google Patents. No. 4070446, 1978-1-24.

  273. Dunbar J J, Tan C B, Weedon G C, Tam T Y, Cutrone A L, Bledsoe E S. Entangled high strength yarn. Google Patents. No. 5579628, 1996-12-3.

  274. Boucher EA, Cooper RN, Everett DH. Preparation and structure of Saran-carbon fibres. Carbon 1970;8(5):597–605.

    Article  CAS  Google Scholar 

  275. Nagasaka A, Ashitaka H, Kusuki Y, Oda D, Yoshinaga T. Process for producing carbon fiber. Google Patents. No. 4131644, 1978-12-26.

  276. Ashitaka H, Kusuki Y, Yamamoto S, Ogata Y, Nagasaka A. Preparation of carbon fibers from syndiotactic 1,2-polybutadiene. J Appl Polym Sci 1984;29:2763–76.

    Article  CAS  Google Scholar 

  277. Shindo A, Fujii R, Souma I. Producing method of carbon or carbonaceous material. Google Patents. No. 3427120, 1969-2-11.

  278. Kawamura K, Jenkins GM. A new glassy carbon fibre. J Mater Sci 1970;5(3):262–7.

    Article  CAS  Google Scholar 

  279. Santangelo JG. Graphitization of fibrous polyamide resinous materials. Google Patents. No. 3547584, 1970-12-15.

  280. Oya A, Yoshida S, Abe Y, Iizuka T, Makiyama N. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 1993;31(1):71–3.

    Article  CAS  Google Scholar 

  281. Jiang H, Desai P, Kumar S, Abhiraman AS. Carbon fibers from poly (p-phenylene benzobisthiazole) (pbzt) fibers: conversion and morphological aspects. Carbon 1991;29(4):635–44.

    Article  CAS  Google Scholar 

  282. Newell JA, Rogers DK, Edie DD, Fain CC. Direct carbonization of PBO fiber. Carbon 1994;32(4):651–8.

    Article  CAS  Google Scholar 

  283. Krutchen C. Melt extrudable polyacetylene copolymer blends. Google Patents. No. 3852235, 1974-12-3.

Download references

Acknowledgements

This work was supported by Key Support Project of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. 21M1060212), Open project of Shanghai Key Laboratory of Lightweight Structural Composite Materials (No. 2232019A4-02) and National Natural Science Foundation of China (No. 51503086). We dedicated the review to professor Ding Pan on the occasion of his 78th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqi Ju.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Ni, X., Wu, Q. et al. Carbon-Based Fibers: Fabrication, Characterization and Application. Adv. Fiber Mater. 4, 631–682 (2022). https://doi.org/10.1007/s42765-022-00134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00134-x

Keywords

Navigation