Log in

Efficiently Writing Bragg Grating in High-Birefringence Elliptical Microfiber for Label-Free Immunosensing with Temperature Compensation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Immunosensor is a powerful tool in healthcare and clinic, food and drug industry, and environmental protection. Label-free fiber-optic immunosensors have shown a myriad of advantages, such as high sensitivity, anti-electromagnetic interference, and afield measurement via the fiber network. However, the fiber-optic based sensor may bear the temperature cross-talk, especially under the warming condition for bio-activating the immune molecules. In this study, we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation. The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser. The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity. The dual resonances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities, allowing the temperature-compensational RI sensing. The human immunoglobulin G (IgG) molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule. The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem. 2015;407:3883.

    Article  CAS  Google Scholar 

  2. Chiavaioli F, Baldini F, Tombelli S, Trono C, Giannetti A. Biosensing with optical fiber gratings. Nanophotonics. 2017;6:663.

    Article  CAS  Google Scholar 

  3. Chiavaioli F, Gouveia AJC, Jorge ASP, Baldini F. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensors. 2017;7:23.

    Article  CAS  Google Scholar 

  4. Guo T, González-Vila Á, Loyez M, Caucheteur C. Plasmonic optical fiber-grating immunosensing: a review. Sensors. 2017;17:2732.

    Article  CAS  Google Scholar 

  5. Yin M, Gu B, An Q-F, Yang C, Guan YL, Yong K-T. Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev. 2018;376:348.

    Article  CAS  Google Scholar 

  6. Guan B-O, Huang Y. Interface sensitized optical microfiber biosensors. J Lightwave Technol. 2019;37:2616.

    Article  CAS  Google Scholar 

  7. Li Y, Xu Z, Tan S, Fang F, Yang L, Yuan B, Sun Q. Recent advances in microfiber sensors for highly sensitive biochemical detection. J Phys D Appl Phys. 2019;52:493002.

    Article  CAS  Google Scholar 

  8. Socorro-Leránoz AB, Santano D, Del Villar I, Matias IR. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens Bioelectron X. 2019;1:100015.

    Google Scholar 

  9. Xu Y, Bai P, Zhou X, Akimov Y, Png CE, Ang L-K, Knoll W, Wu L. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv Opt Mater. 2019;7:1801433.

    Article  CAS  Google Scholar 

  10. Zhao Y, Tong R, **a F, Peng Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron. 2019;142:111505.

    Article  CAS  Google Scholar 

  11. Zhang L, Tang Y, Tong L. Micro-/nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology. iScience. 2020;23:100810.

    Article  Google Scholar 

  12. Zhao Q, Yin M, Zhang AP, Prescher S, Antonietti M, Yuan J. Hierarchically Structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing. J Am Chem Soc. 2013;135:5549.

    Article  CAS  Google Scholar 

  13. Yu C, Wu Y, Liu X, Fu F, Gong Y, Rao Y-J, Chen Y. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sens Actuators B Chem. 2017;244:107.

    Article  CAS  Google Scholar 

  14. Li H, Huang Y, Hou G, **ao A, Chen P, Liang H, Huang Y, Zhao X, Liang L, Feng X, Guan B-O. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Sci Adv. 2019;5:eaax4659.

    Article  CAS  Google Scholar 

  15. Sun L-P, Huang Y, Huang T, Yuan Z, Lin W, Sun Z, Yang M, **ao P, Ma J, Wang W, Zhang Y, Liu Z, Guan B-O. Optical microfiber reader for enzyme-linked immunosorbent assay. Anal Chem. 2019;91:14141.

    Article  CAS  Google Scholar 

  16. Li Y, Fang F, Yang L, Tan S, Yan Z, Sun Q. In-situ DNA hybridization detection based on a reflective microfiber probe. Opt Express. 2020;28:970.

    Article  CAS  Google Scholar 

  17. Guo T, Liu F, Liu Y, Chen N-K, Guan B-O, Albert J. In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors. Biosens Bioelectron. 2014;55:452.

    Article  CAS  Google Scholar 

  18. Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang KS. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt Lett. 2014;39:1235.

    Article  CAS  Google Scholar 

  19. Yin M-J, Yao M, Gao S, Zhang AP, Tam H-Y, Wai P-KA. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater. 2016;28:1394.

    Article  CAS  Google Scholar 

  20. Liu C, Cai Q, Xu B, Zhu W, Zhang L, Zhao J, Chen X. Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing. Biosens Bioelectron. 2017;94:200.

    Article  CAS  Google Scholar 

  21. Hu D, Xu Z, Long J, **ao P, Liang L, Sun L, Liang H, Ran Y, Guan B-O. Label-free and reproducible chemical sensor using the vertical-fluid-array induced optical fiber long period grating (VIOLIN). Sensors. 2020;20:3415.

    Article  CAS  Google Scholar 

  22. **ao P, Sun Z, Huang Y, Lin W, Ge Y, **ao R, Li K, Li Z, Lu H, Yang M, Liang L, Sun L-P, Ran Y, Li J, Guan B-O. Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating. Opt Express. 2020;28:15783.

    Article  CAS  Google Scholar 

  23. Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor. Opt Express. 2007;15:7888.

    Article  Google Scholar 

  24. Xu Z, Luo Y, Liu D, Shum PP, Sun Q. Sensitivity-controllable refractive index sensor based on reflective θ-shaped microfiber resonator cooperated with Vernier effect. Sci Rep. 2017;7:9620.

    Article  Google Scholar 

  25. Chiavaioli F, Zubiate P, Del Villar I, Zamarreño CR, Giannetti A, Tombelli S, Trono C, Arregui FJ, Matias IR, Baldini F. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens. 2018;3:936.

    Article  CAS  Google Scholar 

  26. Zubiate P, Urrutia A, Zamarreño CR, Egea-Urra J, Fernández-Irigoyen J, Giannetti A, Baldini F, Díaz S, Matias IR, Arregui FJ, Santamaría E, Chiavaioli F, Del Villar I. Fiber-based early diagnosis of venous thromboembolic disease by label-free d-dimer detection. Biosens Bioelectron X. 2019;2:100026.

    CAS  Google Scholar 

  27. Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J. In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem. 2011;83:7027.

    Article  CAS  Google Scholar 

  28. Guo T, Liu F, Liang X, Qiu X, Huang Y, **e C, Xu P, Mao W, Guan B-O, Albert J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens Bioelectron. 2016;78:221.

    Article  CAS  Google Scholar 

  29. Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, Lian J, Wang Y. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens Actuators B Chem. 2016;230:206.

    Article  CAS  Google Scholar 

  30. Lobry M, Lahem D, Loyez M, Debliquy M, Chah K, David M, Caucheteur C. Non-enzymatic D-glucose plasmonic optical fiber grating biosensor. Biosens Bioelectron. 2019;142:111506.

    Article  CAS  Google Scholar 

  31. Liang L, ** L, Ran Y, Sun L-P, Guan B-O. Fiber light-coupled optofluidic waveguide (FLOW) immunosensor for highly sensitive detection of p53 protein. Anal Chem. 2018;90:10851.

    Article  CAS  Google Scholar 

  32. Gong C, Gong Y, Yang X, Peng G, Rao Y. Pseudo whispering gallery mode optofluidic lasing based on air-clad optical fiber. J Lightwave Technol. 2019;37:2623.

    Article  CAS  Google Scholar 

  33. Sun L, Huang T, Yuan Z, Yang M, Huang Y, **ao P, Guan B. Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions. J Lightwave Technol. 2019;37:5435.

    Article  CAS  Google Scholar 

  34. Zhang Z, Pan J, Tang Y, Xu Y, Zhang L, Gong Y, Tong L. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips. Lab Chip. 2020;20:2572.

    Article  CAS  Google Scholar 

  35. Fang X, Liao CR, Wang DN. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt Lett. 2010;35:1007.

    Article  CAS  Google Scholar 

  36. Zhang Y, Lin B, T** SC, Zhang H, Wang G, Shum P, Zhang X. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt Express. 2010;18:26345.

    Article  CAS  Google Scholar 

  37. Ding M, Zervas MN, Brambilla G. A compact broadband microfiber Bragg grating. Opt Express. 2011;19:15621.

    Article  CAS  Google Scholar 

  38. Liu Y, Meng C, Zhang AP, **ao Y, Yu H, Tong L. Compact microfiber Bragg gratings with high-index contrast. Opt Lett. 2011;36:3115.

    Article  CAS  Google Scholar 

  39. Ran Y, Tan Y-N, Sun L-P, Gao S, Li J, ** L, Guan B-O. 193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt Express. 2011;19:18577.

    Article  CAS  Google Scholar 

  40. Kou J-L, Ding M, Feng J, Lu Y-Q, Xu F, Brambilla G. Microfiber-based Bragg gratings for sensing applications: a review. Sensors. 2012;12:8861–76.

    Article  CAS  Google Scholar 

  41. Guan B-O, Li J, ** L, Ran Y. Fiber Bragg gratings in optical microfibers. Opt Fiber Technol. 2013;19:793.

    Article  CAS  Google Scholar 

  42. Ismaeel R, Lee T, Ding M, Belal M, Brambilla G. Optical microfiber passive components. Laser Photonics Rev. 2013;7:350.

    Article  CAS  Google Scholar 

  43. Sun D, Ran Y, Wang G. Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating. Sensors. 2017;17:2559.

    Article  CAS  Google Scholar 

  44. Cao Y, Wang X, Guo T, Ran Y, Feng X, Guan B-O, Yao J. High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation. Sens Actuators B Chem. 2017;245:583.

    Article  CAS  Google Scholar 

  45. Ran Y, ** L, Sun LP, Li J, Guan BO. Temperature-compensated refractive-index sensing using a single Bragg grating in an abrupt fiber taper. IEEE Photonics J. 2013;5:7100208.

    Article  CAS  Google Scholar 

  46. Ran Y, **ao P, Zhang Y, Hu D, Xu Z, Liang L, Guan B-O. A miniature pH probe using functional microfiber Bragg grating. Optics. 2020;1:202–12.

    Article  Google Scholar 

  47. Sun D, Guo T, Ran Y, Huang Y, Guan B-O. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens Bioelectron. 2014;61:541.

    Article  CAS  Google Scholar 

  48. Ran Y, Long J, Xu Z, Hu D, Guan B-O. Temperature monitorable refractometer of microfiber Bragg grating using a duet of harmonic resonances. Opt Lett. 2019;44:3186.

    Article  CAS  Google Scholar 

  49. Ran Y, ** L, Sun L-P, Li J, Guan B-O. Bragg gratings in rectangular microfiber for temperature independent refractive index sensing. Opt Lett. 2012;37:2649.

    Article  CAS  Google Scholar 

  50. Xuan H, Ju J, ** W. Highly birefringent optical microfibers. Opt Express. 2010;18:3828.

    Article  CAS  Google Scholar 

  51. Ran Y, ** L, Tan Y, Sun L, Li J, Guan B-O. High-efficiency ultraviolet inscription of Bragg gratings in microfibers. IEEE Photonics J. 2012;4:181.

    Article  Google Scholar 

  52. Ran Y, ** L, Gao S, Sun L-P, Huang Y-Y, Li J, Guan B-O. Type IIa Bragg gratings formed in microfibers. Opt Lett. 2015;40:3802.

    Article  CAS  Google Scholar 

  53. Sun L-P, Li J, Gao S, ** L, Ran Y, Guan B-O. Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing. Opt Lett. 2014;39:3531.

    Article  CAS  Google Scholar 

  54. Liu T, Liang L-L, **ao P, Sun L-P, Huang Y-Y, Ran Y, ** L, Guan B-O. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosens Bioelectron. 2018;100:155.

    Article  CAS  Google Scholar 

  55. Ran Y, Long J, Xu Z, Yin Y, Hu D, Long X, Zhang Y, Liang L, Liang H, Guan B-O. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens Bioelectron. 2021;179:113081.

    Article  CAS  Google Scholar 

  56. Chiavaioli F, Biswas P, Trono C, Bandyopadhyay S, Giannetti A, Tombelli S, Basumallick N, Dasgupta K, Baldini F. Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings. Biosens Bioelectron. 2014;60:305.

    Article  CAS  Google Scholar 

  57. Cardona-Maya Y, Socorro AB, Del Villar I, Cruz JL, Corres JM, Botero-Cadavid JF. Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching. Sens Actuators B Chem. 2018;265:10.

    Article  CAS  Google Scholar 

  58. Wang B, Wang Q. Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR. IEEE Sens J. 2018;18:8303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61775082, U1701268, 61405074, 61805106), Guangdong Natural Science Foundation (2015A030313324, 2018A030313677), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2019BT02X105), Youth Top-notch Scientific and Technological Innovation Talent of Guangdong Special Support Plan (2019TQ05X136), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Ran or Bai-Ou Guan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, P., Xu, Z., Hu, D. et al. Efficiently Writing Bragg Grating in High-Birefringence Elliptical Microfiber for Label-Free Immunosensing with Temperature Compensation. Adv. Fiber Mater. 3, 321–330 (2021). https://doi.org/10.1007/s42765-021-00087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00087-7

Keywords

Navigation