Log in

Increasing the Fertilizer Efficiency of Potassium Silicate by Co-Pyrolysis and Chemical Activation

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Brazil relies on imported potassium (K) fertilizers despite having reserves of K silicate rocks, such as glauconite. There is an interest in pyrolysis to produce biochar as a nutrient source for crop growth. So far, few studies have explored the pyrolysis on increasing K availability from silicate rocks. We aimed to evaluate the effect of co-pyrolysis of coffee husk with different proportions of glauconite with and without KOH activation on K solubility and in maize growth. Maize was cultivated under greenhouse conditions and received K fertilization (300 mg kg− 1) through coffee husk biochar, coffee husk biochar co-pyrolyzed with 10%, 25%, and 50% of glauconite, coffee husk biochar co-pyrolyzed with 10%, 25%, and 50% of glauconite and 5% KOH, pristine glauconite, pyrolyzed glauconite, pyrolyzed glauconite with 5% KOH, a commercial dose of glauconite (10% of K2O), KCl (positive control), and control without K. Maize was grown for 57 days, and after harvest, the soil was analyzed to determine K availability. The results showed that KOH activation increased K solubility, resulting in 85% of KCl shoot production. Furthermore, KOH activation was found to break the crystalline structure of glauconite and K-feldspar during co-pyrolysis with coffee husk, increasing the total content and available K in soil. The study suggests that glauconite has limited agronomic efficiency and does not release K in the short term. Therefore, co-pyrolysis of glauconite with K-rich organic materials and KOH can increase the solubility of K from silicates, thereby increasing its fertilizer potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anghinoni G, Anghinoni FBG, Tormena CA, Braccini AL, de Carvalho Mendes I, Zancanaro L, Lal R (2021) Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land use Policy 108. https://doi.org/10.1016/j.landusepol.2021.105591

  • Asfaw E, Nebiyu A, Bekele E, Ahmed M, Astatkie T (2019) Coffee-husk biochar application increased AMF root colonization, P accumulation, N2 fixation, and yield of soybean grown in a tropical Nitisol, Southwest Ethiopia. J Plant Nutr Soil Sci 182:419–428. https://doi.org/10.1002/jpln.201800151

    Article  CAS  Google Scholar 

  • Baldermann A, Banerjee S, Czuppon G, Dietzel M, Farkaš J, Lӧhr S, Moser U, Scheiblhofer E, Wright NM, Zack T (2022) Impact of green clay authigenesis on element sequestration in marine settings. Nat Commun 13. https://doi.org/10.1038/s41467-022-29223-6

  • Ballotin FC, Santos WO, Mattiello EM, Carmignano O, Teixeira APC, Lago RM (2020) Potential slow release fertilizers based on K2MgSiO4 obtained from serpentinite. J Braz Chem Soc 31:653–661. https://doi.org/10.21577/0103-5053.20190229

    Article  CAS  Google Scholar 

  • Bilias F, Kalderis D, Richardson C, Barbayiannis N, Gasparatos D (2023) Biochar application as a soil potassium management strategy: a review. Sci Total Environ 858:159782. https://doi.org/10.1016/j.scitotenv.2022.159782

    Article  ADS  CAS  PubMed  Google Scholar 

  • Boldrin PF, Souto HF, Salles LS, Neto AEF (2019) Alternative sources of potassium for maize cultivation. Cienc Agrotecnol 43. https://doi.org/10.1590/1413-7054201943023619

  • Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos De Análise Química, Mineralógica E Física De Solos do Instituto Agronômico De Campinas. Instituto Agronômico de Campinas, Campinas. (Portuguese)

    Google Scholar 

  • Carmignano ORRD, Vieira SS, Brandão PRG, Bertoli AC, Lago RM (2020) Serpentinites: Mineral structure, properties and technological applications. J Braz Chem Soc 31:2–14

    CAS  Google Scholar 

  • Chen W, Gong M, Li K, **a M, Chen Z, **ao H, Fang Y, Chen Y, Yang H, Chen H (2020) Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy 278:115730. https://doi.org/10.1016/j.apenergy.2020.115730

    Article  CAS  Google Scholar 

  • Ciceri D, De Oliveira M, Allanore A (2017) Potassium fertilizer: Via hydrothermal alteration of K-feldspar ore. Green Chem 19:5187–5202. https://doi.org/10.1039/c7gc02633a

    Article  CAS  Google Scholar 

  • Da Silva CCG, de Medeiros EV, Fracetto GGM, Fracetto FJC, Filho APM, Lima JR, de Duda S, da Costa GP, Junior DP, Hammecker MAL C (2021) Coffee waste as an eco-friendly and low-cost alternative for biochar production impacts on sandy soil chemical attributes and microbial gene abundance. Bragantia 80. https://doi.org/10.1590/1678-4499.20200459

  • De Aquino JM, Taniguchi CAK, Magini C, Berni GV (2020) The potential of alkaline rocks from the Fortaleza volcanic province (Brazil) as natural fertilizers. J South Am Earth Sci 103. https://doi.org/10.1016/j.jsames.2020.102800

  • De Oliveira JL, Da Silva JN, Graciosa Pereira E, Oliveira Filho D, Rizzo Carvalho D (2013) Characterization and map** of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification. Renew Sustain Energy Rev 21:52–58

    Article  Google Scholar 

  • Di Pietro SA, Emerson HP, Katsenovich Y, Qafoku NP, Szecsody JE (2020) Phyllosilicate mineral dissolution upon alkaline treatment under aerobic and anaerobic conditions. Appl Clay Sci 189. https://doi.org/10.1016/j.clay.2020.105520

  • Dias KG, de L, Guimarães PTG, do Carmo DL, Reis THP, de Lacerda JJ J (2018) Alternative sources of potassium in coffee plants for better soil fertility, productivity, and beverage quality. Pesqui Agropecu Bras 53:1355–1362. https://doi.org/10.1590/S0100-204X2018001200008

    Article  Google Scholar 

  • Domingues RR, Sánchez-Monedero MA, Spokas KA, Melo LCA, Trugilho PF, Valenciano MN, Silva CA (2020) Enhancing cationexchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate. Agronomy 10:824. https://doi.org/10.3390/agronomy10060824

  • Duarte A, Cantarella He, Quaggio JA (2022) Milho para grãos e silagem. In:Boletim 100: Recomendações De adubação E calagem para o estado de São Paulo/Editores: Heitor Cantarella, José Antonio Quaggio, Dirceu De Mattos Jr. Campinas: Instituto Agronômico, 489p. (Portuguese).

  • Enders A, Lehmann J (2012) Comparison of wet-digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar. Commun Soil Sci Plant Anal 43:1042–1052. https://doi.org/10.1080/00103624.2012.656167

    Article  CAS  Google Scholar 

  • Enders A, Lehmann j (2017) Biochar: A Guide to Analytical Methods. In: Singh B, Camps-Arbestain M, Lehmann J (eds) Biochar: A Guide to Analytical Methods, First editon. pp 9–22

  • Geilfus CM (2019) Chloride in soil: from nutrient to soil pollutant. Environ Exp Bot 157:299–309. https://doi.org/10.1016/j.envexpbot.2018.10.035

    Article  CAS  Google Scholar 

  • Guggenheim S, Adams Jm B, Dc, Bergaya F, Brigatti Mf D, Va F, Mll, Gala ANE, Kogure T, Stanjek H (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude Des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Min 41:863–877

    Article  ADS  CAS  Google Scholar 

  • Hu M, Ye Z, Zhang Q, Xue Q, Li Z, Wang J, Pan Z (2022) Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass. Energy 245. https://doi.org/10.1016/j.energy.2022.123286

  • Kassa H, Suliman H, Workayew T (2012) Evaluation of composting process and quality of Compost from Coffee By-Products (Coffee Husk & Pulp). Ethiop J Environ Stud Manage 4. https://doi.org/10.4314/ejesm.v4i4.2

  • Kendrick JE, Lavallée Y, Mariani E, Dingwell DB, Wheeler J, Varley NR (2017) Crystal plasticity as an indicator of the viscous-brittle transition in magmas. Nat Commun 8. https://doi.org/10.1038/s41467-017-01931-4

  • Konneh M, Wandera SM, Murunga SI, Raude JM (2021) Adsorption and desorption of nutrients from abattoir wastewater: modelling and comparison of rice, coconut and coffee husk biochar. Heliyon 7. https://doi.org/10.1016/j.heliyon.2021.e08458

  • Kukartsev VA, Cherepanov AI, Kukartsev VV, Tynchenko VS, Bukhtoyarov VV, Popov AM, Sergienko RB, Tynchenko SV (2022) X-ray diffraction phase analysis of changes in the lattice of Pervouralsk Quartzite upon Heating. Minerals 12. https://doi.org/10.3390/min12020233

  • Li T, Wang H, Wang J, Zhou Z, Zhou J (2015) Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive crop** with perennial ryegrass. Sci Rep 5. https://doi.org/10.1038/srep09249

  • Lodi LA, Klaic R, Ribeiro C, Farinas CS (2021) A green K-fertilizer using mechanical activation to improve the solubilization of a low-reactivity potassium mineral by Aspergillus Niger. Bioresour Technol Rep 15. https://doi.org/10.1016/j.biteb.2021.100711

  • Malavolta E (1980) Elementos De nutrição mineral das plantas. Agronômica Ceres, São Paulo. (Portuguese)

    Google Scholar 

  • Malavolta E, Vitti Gc O Sa (1997) Avaliação do estado nutricional das plantas: princípios e aplicações, 2nd edn. Associação Brasileira de Potassa e do Fósforo, Piracicaba. (Portuguese)

    Google Scholar 

  • McRae SG (1972) Glauconite. Earth Sci Rev 8:397–440

    Article  ADS  CAS  Google Scholar 

  • Nogueira TAR, Miranda BG, Jalal A, Lessa LGF, Filho MCMT, Marcante NC, Abreu-Junior CH, Jani AD, Capra GF, Moreira A, de Martins É S (2021) Nepheline syenite and phonolite as alternative potassium sources for maize. https://doi.org/10.3390/agronomy11071385. Agronomy 11:

  • Novais RF, Neves JCL, Barros NF (1991) Ensaio em ambiente controlado. In: Oliveira AJ, Garrido WE, Araújo JD, Lourenço S (eds) Métodos De Pesquisa em fertilidade do solo. EMBRAPA, Brasília, pp 189–198. (Portuguese).

    Google Scholar 

  • Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E (2019) Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Rep 7. https://doi.org/10.1016/j.biteb.2019.100266

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284. https://doi.org/10.1007/s00374-011-0624-7

    Article  CAS  Google Scholar 

  • Ramos CG, Hower JC, Blanco E, Oliveira MLS, Theodoro SH (2022) Possibilities of using silicate rock powder: an overview. Geosci Front 13. https://doi.org/10.1016/j.gsf.2021.101185

  • Rudmin M, Banerjee S, Makarov B, Mazurov A, Ruban A, Oskina Y, Tolkachev O, Buyakov A, Shaldybin M (2019) An investigation of plant growth by the addition of glauconitic fertilizer. Appl Clay Sci 180. https://doi.org/10.1016/j.clay.2019.105178

  • Safatle FA, de Oliveira KD, Neto CN de Á (2020) Potassium recovery from Brazilian glauconitic siltstone by hydrothermal treatments. Revista Escola De Minas 73:213–224. https://doi.org/10.1590/0370-44672019730047

    Article  Google Scholar 

  • Santos WO, Mattiello EM, Vergutz L, Costa RF (2016) Production and evaluation of potassium fertilizers from silicate rock. J Plant Nutr Soil Sci 179:547–556. https://doi.org/10.1002/jpln.201500484

    Article  CAS  Google Scholar 

  • Santos C, Malta MR, Gonçalves MGM et al (2023) Chloride Applied via Fertilizer affects Plant Nutrition and Coffee Quality. Plants 12:885. https://doi.org/10.3390/plants12040885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schueler TA, Dourado ML, Videira SS, da Cunha CD, Rizzo ACL (2021) Biosolubilization of verdete: an alternative potassium source for agriculture fertilizer. Biocatal Agric Biotechnol 34. https://doi.org/10.1016/j.bcab.2021.102031

  • Shekhar S, Mishra D, Agrawal A, Sahu KK (2017) Physical and chemical characterization and recovery of potash fertilizer from glauconitic clay for agricultural application. Appl Clay Sci 143:50–56. https://doi.org/10.1016/j.clay.2017.03.016

    Article  CAS  Google Scholar 

  • Shekhar S, Sinha S, Mishra D, Agrawal A, Sahu KK (2020) A sustainable process for recovery of potash fertilizer from glauconite through simultaneous production of pigment grade red oxide. Sustainable Mater Technol 23. https://doi.org/10.1016/j.susmat.2019.e00129

  • Soumare A, Sarr D, Diédhiou A (2022) Potassium sources, microorganisms, and plant nutrition—challenges and future research directions: a review. Pedosphere 33:105–115. https://doi.org/10.1016/j.pedsph.2022.06.025

    Article  CAS  Google Scholar 

  • Teixeira AMS, Dos Santos Garrido FM, Medeiros ME, Sampaio JA (2015) Effect of thermal treatments on the potassium and sodium availability in phonolite rock powder. Int J Min Process 145:57–65. https://doi.org/10.1016/j.minpro.2015.07.002

    Article  CAS  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture - status and perspectives. J Plant Physiol 171:656–669. https://doi.org/10.1016/j.jplph.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Zwetsloot MJ, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95:281–288. https://doi.org/10.1002/jsfa.6716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Improvement of Higher Education Personnel (CAPES - PROEX) and the Research Support Foundation of the State of Minas Gerais (FAPEMIG – Process number APQ-01159-21). LCA Melo is a research fellow of the National Council for Scientific and Technological Development (CNPq – Process number 311634/2021-4). We thank Livia Botelho and Marienne Duarte for their help with the analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LCAM, BCL, IADdR. Methodology: LCAM, BCL, IADdR, AdAL. Validation: all authors. Investigation: all authors. Formal analysis: all authors. Visualization: all authors. Writing - original draft: AdAL, LCAM, IADdR. Resources: LCAM. Supervision: LCAM. Project administration: LCAM. Funding acquisition: LCAM, Writing - review & and editing: all authors.

Corresponding author

Correspondence to Leônidas Carrijo Azevedo Melo.

Ethics declarations

Competing Interests

At the time of submission, all the authors report that there are no competing interests (financial, professional or personal) that could be relevant to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, A.d.A., Resende, I.A.D.d., Lago, B.C. et al. Increasing the Fertilizer Efficiency of Potassium Silicate by Co-Pyrolysis and Chemical Activation. J Soil Sci Plant Nutr (2024). https://doi.org/10.1007/s42729-024-01704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42729-024-01704-1

Keywords

Navigation