Log in

Protein and carbohydrates mobilization rate and their relationship with grain yield in simple hybrids of white and yellow maize

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Carbohydrates and proteins are the major components of corn grain. These macromolecules are mobilized from the leaves to grain in order to obtain a favorable yield. An important step in validation of maize hybrids is the metabolic performance that allows to increase grain quality. The present study intended to evaluate the metabolic performance of simple corn hybrids based on protein and carbohydrates content, its mobilization rate and its relationship with grain yield, during flowering and grain maturation. Leaf total soluble protein (TSP) and total carbohydrate (TCB) accumulation were quantified; protein (PMR) and carbohydrate (CBMR) mobilization rates were estimated, and crop yield was measured. Three simple white grain (GB5, GB4, GB3) and three yellow grain (GA4, GA5, GA1) maize hybrids, obtained through a cross in a diallelic scheme in Celaya, Guanajuato, Mexico, were used. A significant variability in TSP and TCB content was observed among the established hybrids. All hybrids showed TSP concentrations between 30–45 mg g−1 DW−1 during flowering and 2–10 mg g−1 DW−1 during grain maturation. TCB content in all hybrids was higher than 55 mg g−1 DW−1, independent of the time of evaluation (flowering or grain ripening). The mobilization rates were higher than 70% in both white and yellow grain hybrids, but there was intra-hybrid variability. GB5 hybrid showed highest correlation of TSP and TCB, and PMR was higher than CBMR. In GB hybrids, TSP correlated with yield more than TCB. The hybrids with best response of the evaluated variables were GB5 and GA4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abarca OR, Zavala DGI, Estrada AG (2023) Economic analysis of maize production in Chiapas, Mexico, in the Frailesca region. Ciencia Latina Revista Científica Multidisciplinar 7(4):423–437

    Article  Google Scholar 

  • AbdElgawad H, Avramova V, Baggerman G, Van Raemdonck G, Valkenborg D, Van Ostade X, Beemster GT (2020) Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant Cell Environ 43(9):2254–2271. https://doi.org/10.1111/pce.13813

    Article  PubMed  Google Scholar 

  • Aguilar-Carpio C, Escalante-Estrada JAS, Aguilar-Mariscal I, Rojas-Victoria NJ (2022) Profitability and yield of three maize genotypes in response to biofertilizer and nitrogen, in temperate climate. Biotechnology 24(2):77–83

    Google Scholar 

  • Alam MR, Nakasathien S, Molla MSH, Islam MA, Maniruzzaman M, Ali MA, Sarobool E, Vichukit V, Hassan MM, Desooky ES, El-Ghany EMA, Brestic M, Skalicky M, Jagadish VK, Hossain A (2021) Kernel water relations and kernel filling traits in maize (Zea mays L.) are influenced by water-deficit condition in a tropical environment. Front Plant Sci 12:717178. https://doi.org/10.3389/fpls.2021.717178

    Article  PubMed  PubMed Central  Google Scholar 

  • Amegbor IK, Van Biljon A, Shargie N, Tarekegne A, Labuschagne MT (2022) Grain quality and yield potential of hybrids from quality and non-quality protein maize inbred lines. J Cereal Sci 107:103544. https://doi.org/10.1016/j.jcs.2022.103544

    Article  Google Scholar 

  • Araujo LA (2022) Demand, supply and price of yellow corn in Mexico 2012–2021. Mex J Agribus 50:197–208. https://doi.org/10.22004/ag.econ.322014

    Article  Google Scholar 

  • Argentel-Martínez L, Garatuza-Payán J, Yépez EA, Salazar-Huerta FJ, Arredondo T (2018) Effects of temperatua on protein and carbohydrate metabolism and vegetation index in wheat (Triticum durum L.). Tropic Crops 39(3):49–57

    Google Scholar 

  • Ayala-Angulo M, González EJ, Ureta C, Chávez-Servia JL, González-Ortega E, Vandame R, Piñeyro-Nelson A (2023) Local and regional dynamics of native maize seed lot use by small-scale producers and their impact on transgene presence in three Mexican states. Plants 12(13):2514. https://doi.org/10.3390/plants12132514

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrios M, Basso C (2018) Effect of nitrogen fertilization on yield components and grain nutritional quality of six maize hybrids. Bioagro 30(1):39–48

    Google Scholar 

  • Coutiño EB (2022) Grain yield, forage and forage quality of new maize hybrids from Valles Altos. Mex J Agric Sci 13(1):77–87

    Google Scholar 

  • Dong S, Beckles DM (2019) Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol 234:80–93. https://doi.org/10.1016/j.jplph.2019.01.007

    Article  PubMed  Google Scholar 

  • Donovan J, Rutsaert P, Domínguez C, Peña M (2022) Capacities of local maize seed enterprises in Mexico: implications for seed systems development. Food Secur. https://doi.org/10.1007/s12571-021-01247-8

    Article  Google Scholar 

  • Dwiningsih Y, Al-Kahtani J (2022) Genome-wide association study of complex traits in maize detects genomic regions and genes for increasing grain yield and grain quality. Adv Sustain Sci Eng Technol 4(2):0220209. https://doi.org/10.26877/asset.v4i2.12678

    Article  Google Scholar 

  • El Sabagh A, Hossain A, Iqbal MA, Barutçular C, Islam MS, Çiğ F, Erman M, Sytar O, Brestic M, Wasaya A, Jabeen T, Bukhari MA, Mubeen M, Athar HR, Azeem F, Akdeniz H, Konuşkan Ö, Kizilgeci F, Ikram M, Sorour S, Nasim W, Elsabagh M, Rizwan M, Meena RS, Fahad S, Ueda A, Liu L, Saneoka H (2021) Maize adaptability to heat stress under changing climate. In: Hossain A (ed) Plant stress physiology. IntechOpen. https://doi.org/10.5772/intechopen.92396

  • Espinosa-Calderón A, Tadeo-Robledo M, Zamudio-González B, Virgen-Vargas J, Turrent-Fernández A, López-López C, Gómez-Montiel N, Sierra-Macías M, Vázquez-Carrillo MG, Rodríguez-Montalvo F, Canales-Islas EI, Zaragoza-Esparza JA, Valdivia-Bernal R, Cárdenas-Marcelo AL, Andrés-Meza P (2021) HV 59 A: yellow grain maize varietal hybrid for Valles Altos de México. Rev Fitotec Mex 44(3):481–481

    Google Scholar 

  • Ewu Y, Messing J (2014) Proteome balancing of the maize seed for higher nutritional value. Front Plant Sci 5:240. https://doi.org/10.3389/fpls.2014.00240

    Article  Google Scholar 

  • Fadiji AE, Yadav AN, Santoyo G, Babalola OO (2023) Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res. https://doi.org/10.1016/j.micres.2023.127368

    Article  PubMed  Google Scholar 

  • García-Rodríguez JG, Mendoza-Elos M, Cervantes-Ortiz F, Ramirez-Pimentel JG, Agrirre-Mancilla CL, Gracía-Perea MA, Figueroa-Rivera MG, Rodriguez-Perez G, Rodríguez-Herrera SA (2019) Adaptability of tropical precommercial maize hybrids in the Bajío of Guanajuato, Mexico. J Agric Environ Res 10(1):57–65

    Google Scholar 

  • Guo Y, **ao Y, Li M, Hao F, Zhang X, Sun H, He Y (2022) Identifying crop phenology using maize height constructed from multi-sources images. Int J Appl Earth Obs Geoinf 115:103121. https://doi.org/10.1016/j.jag.2022.103121

    Article  Google Scholar 

  • Illés Á, Mousavi SN, Bojtor C, Nagy J (2020) The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Res Commun 48:565–573. https://doi.org/10.1007/s42976-020-00074-5

    Article  Google Scholar 

  • Inamullah NR, Shah NH, Arif M, Siddiq M, Mian IA (2011) Correlations among grain yield and yield attributes in maize hybrids at various nitrogen levels. Sarhad J Agric 27(4):531–538

    Google Scholar 

  • Ismagilov R, Akhiyarov B, Islamgulov D, Ayupov D, Salnikov V (2019) Maize hybrid productivity and grain quality in conditions of the Cis-Ural forest-steppe. AIMS Agric Food. https://doi.org/10.3934/agrfood.2019.3.604

    Article  Google Scholar 

  • Ivanyshyn O, Khomina V, Pantsyreva H (2021) Influence of fertilization on the formation of grain productivity in different-maturing maize hybrids. Ukr J Ecol 11(3):262–269. https://doi.org/10.15421/2021_170

    Article  Google Scholar 

  • Jahangirlou MR, Akbari GA, Alahdadi I, Soufizadeh S, Parsons D (2020) Grain quality of maize cultivars as a function of planting dates, irrigation and nitrogen stress: a case study from semiarid conditions of Iran. Agriculture 11(1):11. https://doi.org/10.3390/agriculture11010011

    Article  Google Scholar 

  • Kuradusenge M, Hitimana E, Hanyurwimfura D, Rukundo P, Mtonga K, Mukasine A, Uwitonze A, Uwitonze C, Ngabonziza J, Uwamahoro A (2023) Crop yield prediction using machine learning models: case of Irish potato and maize. Agriculture 13(1):225. https://doi.org/10.3390/agriculture13010225

    Article  Google Scholar 

  • Langer M, Hilo A, Guan JC, Koch KE, ** maize kernels. Plant Physiol 192(2):1268–1288. https://doi.org/10.1093/plphys/kiad038

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Han X, Ren H, Zhao B, Zhang J, Ren B, Gao H, Liu P (2023) Exogenous SA or 6-BA maintains photosynthetic activity in maize leaves under high temperature stress. The Crop Journal 11(2):605–617. https://doi.org/10.1016/j.cj.2022.08.006

    Article  Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22(9):1156–1158. https://doi.org/10.1021/ac60045a016

    Article  Google Scholar 

  • Medina-Herrera MDR, Negrete-Rodríguez MDL, Gámez-Vázquez FP, Álvarez-Bernal D, Conde-Barajas E (2020) Application of sewage sludge affects, in the short term, microbial biomass and its activity in sodic soils. Int J Environ Pollut 36(3):577–591. https://doi.org/10.20937/rica.53425

    Article  Google Scholar 

  • Mukri G, Patil MS, Motagi BN, Bhat JS, Singh C, Jeevan Kumar SP, Gadag R, Gupta N, Simal-gandara J (2022) Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Mol Biol Rep 49(6):4517–4524. https://doi.org/10.1007/s11033-022-07295-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndlovu N, Spillane C, McKeown PC, Cairns JE, Das B, Gowda M (2022) Genome-wide association studies of grain yield and quality traits under optimum and low-nitrogen stress in tropical maize (Zea mays L.). Theor Appl Genet 135(12):4351–4370. https://doi.org/10.1007/s00122-022-04224-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Nehe A, Akin B, Sanal T, Evlice AK, Ünsal R, Dinçer N, Morgounov A (2019) Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE 14(7):e0219432. https://doi.org/10.1371/journal.pone.0219432

    Article  PubMed  PubMed Central  Google Scholar 

  • Odjo S, Palacios-Rojas N, Burgueno J, Corrado M, Ortner T, Verhulst N (2022) Hermetic storage technologies preserve maize seed quality and minimize grain quality loss in smallholder farming systems in Mexico. J Stored Prod Res 96:101954. https://doi.org/10.1016/j.jspr.2022.101954

    Article  Google Scholar 

  • Ortega LOP (2023) Ancestral and subsistence food: discourse and control of maize cultivation and consumption in Mexico, 1937–1961. Historia y Memoria 27:135–175. https://doi.org/10.19053/20275137.n27.2023.14812

    Article  Google Scholar 

  • Ortiz-Prudencio S (2006) Determination of the proximal chemical composition and dietary fiber of 43 creole maize varieties from 7 municipalities in the southeastern part of the State of Hidalgo. Autonomous University of the State of Hidalgo. Institute of Health Sciences. Academic Area of Nutrition. Hidalgo, México, p 60. http://repository.uaeh.edu.mx/bitstream/bitstream/

  • Ouédraogo N, Sawadogo N, Banhoro A, Kouraogo I, Boro O, Sawadogo AP, Gracen V (2023) Genotype x environment interactions and stability of grain yield of maize hybrids across Sudanian and Sudano-Sahelian agro-ecological zones in Burkina Faso. Int J Plant Soil Sci 35(18):2169–2181. https://doi.org/10.9734/IJPSS/2023/v35i183508

    Article  Google Scholar 

  • Pérez-López L, Ortiz FC, Martínez LA, Enríquez EA, Rodríguez JGG, Mancilla CLA (2022) Principal components and correlations between vegetative and yield traits of yellow grain maize hybrids. In: González JA, Rodrigues de Oliveira B, Zuffo AM, Lustosa ZA, Verdecia PA (eds) Ciência em Foco Volume XI, Pantanal Editora, Brasil. https://doi.org/10.46420/9786581460785cap6

  • Prakash L, Prathapasenan G (1988) Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa L. var GR-3). J Agron Crop Sci 160(5):325–334. https://doi.org/10.1111/j.1439-037X.1988.tb00630.x

    Article  Google Scholar 

  • Ramírez CA, Restrepo-Díaz H (2022) Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2022.100268

    Article  Google Scholar 

  • Robledo MT, Calderón AE, Islas EIC, Vargas JV, Santillán AM, Fernández AT, Arteaga IE, López LC, Gómez MN, Sierra MM, Zaragoza EJ, Macedo GJ, Valdivia BR, Zamudio GB, Andrés MP, Aguilar VK (2022) Kuautli puma: varietal hybrid of yellow grain maize for altitudes from 2200 to 2600 masl. Rev Fitotec Mex 45(4):527–527

    Google Scholar 

  • Saavedra GC, Pérez LJ, González HA, Franco MJ, Rubí AM, Ramírez DJF (2021) Griffing methods: review on their importance and application in conventional plant breeding. Revista Mexicana De Ciencias Agrícolas 12(7):1275–1286

    Google Scholar 

  • Saboor A, Ali MA, Ahmed N, Skalicky M, Danish S, Fahad S, Datta R (2021) Biofertilizer-based zinc application enhances maize growth, gas exchange attributes, and yield in zinc-deficient soil. Agriculture 11(4):310. https://doi.org/10.3390/agriculture11040310

    Article  Google Scholar 

  • Shen J, Qin C, Qin Y, Du M, Begum N, Lian H (2023) Acetylcholine alleviates salt stress in Zea mays L. by promoting seed germination and regulating phytohormone level and antioxidant capacity. J Plant Growth Regul. https://doi.org/10.1007/s00344-023-11089-7

    Article  Google Scholar 

  • SIAP (2022) Panorama Agroalimentario 2022. Servicio de información agroalimentaria y pesquera. https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2022/Panorama-Agroalimentario-2022

  • Suganya A, Saravanan A, Manivannan N (2020) Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: an overview. Commun Soil Sci Plant Anal 51(15):2001–2021. https://doi.org/10.1080/00103624.2020.1820030

    Article  Google Scholar 

  • Travaglia C, Balboa G, Espósito G, Reinoso H (2012) ABA action on the production and redistribution of field-grown maize carbohydrates in semiarid regions. Plant Growth Regul 67:27–34. https://doi.org/10.1007/s10725-012-9657-7

    Article  Google Scholar 

  • Villa-Falfán C, Valdés-Rodríguez OA, Vázquez-Aguirre JL, Salas-Martínez F (2023) Climate indices and their impact on maize yield in Veracruz, Mexico. Atmosphere 14(5):778. https://doi.org/10.3390/atmos14050778

    Article  Google Scholar 

  • Yang B, Wang J, Yu M, Zhang M, Zhong Y, Wang T, Lai J (2022) The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. Plant Cell 34(11):4232–4254. https://doi.org/10.1093/plcell/koac256

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida S (1976) Laboratory manual for physiological studies of rice. Int Rice Res Ins Philippines 23:61–66

    Google Scholar 

  • Yue H, Gauch HG, Wei J, **e J, Chen S, Peng H, Jiang X (2022) Genotype by environment interaction analysis for grain yield and yield components of summer maize hybrids across the huanghuaihai region in China. Agriculture 12(5):602. https://doi.org/10.3390/agriculture12050602

    Article  Google Scholar 

Download references

Acknowledgements

To National Technological of Mexico/ Campus Yaqui Velley and Campus Roque.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Investigation, writing-original draft L.P.L., Methodology, supervision, F.C.O., Software, Project administration, Formal analysis, data curation L.A-M., Validation, E.A.E., Resources, C.L.A-M., Writing-review & editing, O.P-R. and J.G-P., Visualization, J.G.A.. All co-authors reviewed the final version and approved the manuscript before submission.

Corresponding author

Correspondence to Jaime Garatuza-Payán.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, L.P., Argentel-Martínez, L., Peñuelas-Rubio, O. et al. Protein and carbohydrates mobilization rate and their relationship with grain yield in simple hybrids of white and yellow maize. Vegetos (2024). https://doi.org/10.1007/s42535-024-00959-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-024-00959-4

Keywords

Navigation