Log in

A Catalog of 2-Level Orthogonal Minimally Aliased Designs with Small Runs

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

The traditional approach to designing a screening experiment is to start with a regular fractional factorial design (FFD) of resolution III or IV or a subset of columns of a Plackett–Burman design. This experiment is then followed by the foldover of the design in the initial stage or follow-up runs. This paper introduces a class of 2-level orthogonal minimally aliased designs (OMADs) for screening experiments. These OMADs are constructed by selecting subsets of columns of the Hadamard matrices with two circulant cores using a relaxed version of the minimum G-aberration criterion (Deng & Tang in Commun Stat- Theory Methods 29:1379-1395, 1999). Unlike the regular FFDs of resolutions III and IV, nearly all of our OMADs do not have fully aliased effects. As such, follow-up runs used to disentangle these effects from one another become unnecessary. Our OMADs can also be easily divided into two blocks. The OMADs are compared with the designs of Schoen & Mee (J Royal Stat Soc Ser 61:163-174, 2012), Schoen et al. (J Am Stat Assoc 112:1354-1369, 2017) and regular FFDs. A catalog of 252 OMADs with 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs is then given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Box G, Behnken D (1960) Some new three-level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  MathSciNet  Google Scholar 

  2. Box G, Hunter J, Hunter W (2005) Statistics for experimenters, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  3. Deng L, Li Y, Tang B (2000) Catalogue of small runs nonregular designs from Hadamard matrices with generalized minimum aberration. Commun Stat- Theory Methods 29:1379–1395

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng L, Tang B (1999) Generalized resolution and minimum aberration criteria for Plackett–Burman and other nonregular factorial designs. Stat Sin 9:1071–1082

    MathSciNet  MATH  Google Scholar 

  5. Deng L, Tang D (2002) Design selection and classification for Hadamard matrices using generalized minimum aberration criteria. Technometrics 44:173–184

    Article  MathSciNet  Google Scholar 

  6. Errore A, Jones B, Li W, Nachtsheim C (2017) Benefits and fast construction of efficient two-level foldover designs. Technometrics 59:48–57

    Article  MathSciNet  Google Scholar 

  7. Fries A, Hunter WG (1980) Minimum aberration \(2^{k-p}\) designs. Technometrics 22:601–608

    MathSciNet  MATH  Google Scholar 

  8. Hamada M, Wu C (1992) Analysis of designed experiments with complex aliasing. J Qual Technol 23:130–137

    Article  Google Scholar 

  9. Hedayat A, Wallis WD (1978) Hadamard matrices and their applications. Ann Stat 6:1184–1238

    Article  MathSciNet  MATH  Google Scholar 

  10. Ingram D, Tang B (2005) Minimum G aberration design construction and design tables for 24 runs. J Qual Technol 37:101–114

    Article  Google Scholar 

  11. Jones B, Montgomery D (2010) Alternatives to resolution IV screening designs in 16 runs. Int J Exp Des Process Optim 1:285–295

    Article  Google Scholar 

  12. Kotsireas I, Koukouvinos K, Seberry J (2006) Hadamard ideals and Hadamard matrices with two circulant cores. Eur J Comb 27:658–668

    Article  MathSciNet  MATH  Google Scholar 

  13. Loeppky JL, Sitter RR, Tang B (2007) Nonregular designs with desirable projection properties. Technometrics 49:454–467

    Article  MathSciNet  Google Scholar 

  14. Mee RW (2009) A comprehensive guide to factorial two-level experimentation. Springer, New York

    Book  Google Scholar 

  15. Nguyen N-K (1996) An algorithmic approach to constructing supersaturated designs. Technometrics 38:69–73

    Article  MATH  Google Scholar 

  16. Nguyen N-K, Pham DT (2017) Constructing 3-level saturated and supersaturated designs using cyclic Generators. Chemom Intell Lab Syst 164:1–7

    Article  Google Scholar 

  17. Nguyen N-K, Vuong MP, Pham DT (2021) Constructing 2-level foldover designs with minimal aliasing. Chem Intell Lab Syst 215:104335

    Article  Google Scholar 

  18. Plackett R, Burman J (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  MathSciNet  MATH  Google Scholar 

  19. Schoen E, Mee R (2012) Two-level designs of strength 3 and up to 48 runs. J R Stat Soc Ser C 61:163–174

    Article  MathSciNet  Google Scholar 

  20. Schoen E, Vo-Thanh N, Goos P (2017) Two-level orthogonal screening designs with 24, 28, 32 and 36 runs. J Am Stat Assoc 112:1354–1369

    Article  MathSciNet  Google Scholar 

  21. Tang B, Deng L (1999) Minimum G\(_2\)-aberration for nonregular factorial designs. Ann Stat 27:1914–1926

    MATH  Google Scholar 

  22. Xu H, Deng L (2005) Moment aberration projection for nonregular fractional factorial designs. Technometrics 47:121–131

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for comments and suggestions which help to improve the readability of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Ky Nguyen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: OMADs with 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs

Appendix: OMADs with 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs

\(\#\)

\(n\)

\(m\)

A\(_3\)

A\(_4\)

M\(_3\)

M\(_4\)

df(2FI)

\(r_{\textrm{worst}}\)

PIC\(_5\)

1

16

4

0

0

0

0

6

0

2

16

5

0

0

0

0

10

0

1

3

16

6

1

1

8 (4)

8 (4)

14

0.5

0.1667

4

16

7

2

3

8 (8)

8 (12)

14

0.5

0.1945

5†

16

8

3.5

7

8 (14)

8 (28)

14

0.5

0.1928

6

16

9

4

14

8 (16)

16 (14)

15

1

0.4406

7

16

10

8

18

8 (32)

16 (10)

15

1

0.257

8

16

11

12

26

8 (48)

16 (10)

15

1

0.2203

9

16

12

16

39

8 (64)

16 (15)

15

1

0.2203

10

16

13

22

55

8 (88)

16 (15)

15

1

0.1927

11†

16

14

28

77

8 (112)

16 (21)

15

1

0.1927

12†

16

15

35

105

16 (7)

16 (21)

15

1

0.1869

13

20

4

0.16

0.04

4 (4)

4 (1)

6

0.2

14

20

5

0.4

0.2

4 (10)

4 (5)

10

0.2

0.866

15

20

6

0.8

0.6

4 (20)

4 (15)

15

0.2

0.8613

16

20

7

1.4

2.04

4 (35)

12 (2)

19

0.6

0.7582

17

20

8

2.24

4.72

4 (56)

12 (6)

19

0.6

0.7599

18

20

9

3.36

10.8

4 (84)

12 (18)

18

0.6

0.6745

19

20

10

4.8

18

4 (120)

12 (30)

19

0.6

0.6744

20

20

11

8.2

22.8

12 (5)

12 (30)

19

0.6

0.6687

21

20

12

11.36

32.28

12 (8)

12 (39)

19

0.6

0.6392

22

20

13

15.92

43.64

12 (14)

12 (47)

19

0.6

0.6002

23

20

14

20.96

59.24

12 (20)

12 (60)

19

0.6

0.5527

24

20

15

26.52

80.52

12 (26)

12 (81)

19

0.6

0.545

25

20

16

32.64

107.36

12 (32)

12 (108)

19

0.6

0.5441

26

20

17

40

140

12 (40)

12 (140)

19

0.6

0.5385

27†

20

18

48

180

12 (48)

12 (180)

19

0.6

0.5385

28†

20

19

57

228

12 (57)

12 (228)

19

0.6

0.5385

29

24

4

0

0.11

0

8 (1)

6

0.333

30

24

5

0

0.56

0

8 (5)

10

0.333

0.868

31

24

6

0

1.67

0

8 (15)

11

0.333

0.868

32

24

7

0

3.89

0

8 (35)

11

0.333

0.868

33

24

8

0

7.78

0

8 (70)

11

0.333

0.868

34

24

9

0

14

0

8 (126)

11

0.333

0.868

35

24

10

0

23.33

0

8 (210)

11

0.333

0.868

36

24

11

0

36.67

0

8 (330)

11

0.333

0.868

37

24

12

0

55

0

8 (495)

11

0.333

0.868

38

24

13

12.67

34.78

8 (114)

8 (313)

23

0.333

0.7822

39

24

14

16.56

48

8 (149)

8 (432)

23

0.333

0.7764

40

24

15

21

65.44

8 (189)

8 (589)

23

0.333

0.7677

\(\#\)

\(n\)

\(m\)

A\(_3\)

A\(_4\)

M\(_3\)

M\(_4\)

df(2FI)

\(r_{\textrm{worst}}\)

PIC\(_5\)

41

24

16

26.11

87

8 (235)

8 (783)

23

0.333

0.762

42

24

17

31.89

113.78

8 (287)

8 (1024)

23

0.333

0.7583

43

24

18

38.56

145.89

8 (347)

8 (1313)

23

0.333

0.7555

44

24

19

46

184.67

8 (414)

8 (1662)

23

0.333

0.7547

45

24

20

54.22

230.78

8 (488)

8 (2077)

23

0.333

0.7533

46

24

21

63.33

285

8 (570)

8 (2565)

23

0.333

0.7525

47†

24

22

73.33

348.33

8 (660)

8 (3135)

23

0.333

0.7525

48†

24

23

84.33

421.67

8 (759)

8 (3795)

23

0.333

0.7525

49

28

4

0.08

0.02

4 (4)

4 (1)

6

0.143

50

28

5

0.2

0.1

4 (10)

4 (5)

10

0.143

0.935

51

28

6

0.41

0.31

4 (20)

4 (15)

15

0.143

0.9367

52

28

7

0.71

0.88

4 (35)

12 (1)

21

0.429

0.9307

53

28

8

1.14

2.9

4 (56)

12 (9)

27

0.429

0.9099

54

28

9

1.71

5.51

4 (84)

12 (18)

27

0.429

0.907

55

28

10

2.45

13.59

4 (120)

12 (57)

23

0.429

0.8794

56

28

11

3.37

21.43

4 (165)

12 (90)

24

0.429

0.8791

57

28

12

4.49

32.14

4 (220)

12 (135)

25

0.429

0.8791

58†

28

13

5.84

46.43

4 (286)

12 (195)

26

0.429

0.8791

59†

28

14

7.43

65

4 (364)

12 (273)

27

0.429

0.8793

60

28

15

15.98

57.41

12 (41)

12 (181)

27

0.429

0.8708

61

28

16

20.73

74.69

12 (57)

12 (230)

27

0.429

0.8664

62

28

17

25.96

96.24

12 (74)

12 (292)

27

0.429

0.8636

63

28

18

31.35

124.16

12 (90)

12 (378)

27

0.429

0.8627

64

28

19

37.9

156

12 (111)

12 (471)

27

0.429

0.8611

65

28

20

44.82

195.04

12 (132)

12 (589)

27

0.429

0.8604

66

28

21

52.61

240.18

12 (156)

12 (723)

27

0.429

0.8599

67

28

22

61.31

292.8

12 (183)

12 (879)

27

0.429

0.8593

68

28

23

70.59

354.43

12 (211)

12 (1064)

27

0.429

0.8591

69

28

24

80.82

425.18

12 (242)

12 (1276)

27

0.429

0.8589

70

28

25

92

506

12 (276)

12 (1518)

27

0.429

0.8587

71†

28

26

104

598

12 (312)

12 (1794)

27

0.429

0.8587

72†

28

27

117

702

12 (351)

12 (2106)

27

0.429

0.8587

73

32

4

0

0

0

0

6

0

74

32

5

0

0

0

0

10

0

1

75

32

6

0

0

0

0

15

0

1

76

32

7

0.31

0.88

8 (5)

8 (14)

21

0.25

0.9556

77

32

8

0.75

2.5

8 (12)

8 (40)

28

0.25

0.9336

78

32

9

1.81

4.88

8 (30)

8 (78)

29

0.25

0.9097

79

32

10

3.44

6.81

8 (55)

8 (109)

31

0.25

0.9031

80

32

11

4.88

11.5

8 (78)

8 (184)

31

0.25

0.8978

81

32

12

6.69

17.31

8 (107)

8 (277)

31

0.25

0.8955

82

32

13

8.94

24.88

8 (143)

8 (398)

31

0.25

0.8936

83

32

14

11.62

34.38

8 (186)

8 (550)

31

0.25

0.8925

84

32

15

14.75

47.88

8 (236)

8 (766)

31

0.25

0.8902

85

32

16

18.38

63.12

8 (294)

8 (1010)

31

0.25

0.8897

86

32

17

22.5

82.12

8 (360)

8 (1314)

31

0.25

0.8892

87

32

18

27.25

105.38

8 (436)

8 (1686)

31

0.25

0.8885

88

32

19

32.56

133.38

8 (521)

8 (2134)

31

0.25

0.888

89

32

20

38.44

167.44

8 (615)

8 (2679)

31

0.25

0.8875

90

32

21

45

206.62

8 (720)

8 (3306)

31

0.25

0.8872

91

32

22

52.31

252.56

8 (837)

8 (4041)

31

0.25

0.8869

92

32

23

60.38

305.88

8 (966)

8 (4894)

31

0.25

0.8865

93

32

24

69.25

366.88

8 (1108)

8 (5870)

31

0.25

0.8862

94

32

25

78.94

436.5

8 (1263)

8 (6984)

31

0.25

0.886

\(\#\)

\(n\)

\(m\)

A\(_3\)

A\(_4\)

M\(_3\)

M\(_4\)

df(2FI)

\(r_{\textrm{worst}}\)

PIC\(_5\)

95

32

26

89.38

515.62

8 (1430)

8 (8250)

31

0.25

0.8858

96

32

27

100.75

605.25

8 (1612)

8 (9684)

31

0.25

0.8856

97

32

28

112.94

706.06

8 (1807)

8 (11297)

31

0.25

0.8856

98

32

29

126

819

8 (2016)

8 (13104)

31

0.25

0.8856

99†

32

30

140

945

8 (2240)

8 (15120)

31

0.25

0.8856

100†

32

31

155

1085

8 (2480)

8 (17360)

31

0.25

0.8856

101

36

4

0.05

0.01

4 (4)

4 (1)

6

0.111

102

36

5

0.12

0.06

4 (10)

4 (5)

10

0.111

0.963

103

36

6

0.25

0.19

4 (20)

4 (15)

15

0.111

0.9635

104

36

7

0.43

0.43

4 (35)

4 (35)

21

0.111

0.964

105

36

8

0.69

1.75

4 (56)

12 (9)

28

0.333

0.9489

106

36

9

1.04

3.83

4 (84)

12 (23)

35

0.333

0.9428

107

36

10

1.48

10.4

4 (120)

12 (79)

27

0.333

0.92

108

36

11

2.04

16.72

4 (165)

12 (128)

28

0.333

0.9187

109

36

12

2.72

25.07

4 (220)

12 (192)

29

0.333

0.9186

110

36

13

3.53

36.88

4 (286)

12 (284)

30

0.333

0.9176

111

36

14

4.49

51.86

4 (364)

12 (400)

31

0.333

0.9173

112

36

15

5.62

70.78

4 (455)

12 (546)

32

0.333

0.9173

113

36

16

6.91

94.37

4 (560)

12 (728)

33

0.333

0.9173

114†

36

17

8.4

123.41

4 (680)

12 (952)

34

0.333

0.9173

115†

36

18

10.07

158.67

4 (816)

12 (1224)

35

0.333

0.9172

116

36

19

27.77

120.25

12 (160)

12 (733)

35

0.333

0.9049

117

36

20

32.94

148.9

12 (191)

12 (902)

35

0.333

0.9046

118

36

21

38.74

182.63

12 (226)

12 (1101)

35

0.333

0.9043

119

36

22

45.19

224.04

12 (265)

12 (1354)

35

0.333

0.9037

120

36

23

51.99

271.79

12 (305)

12 (1645)

35

0.333

0.9036

121

36

24

59.95

323.28

12 (354)

12 (1945)

35

0.333

0.9032

122

36

25

68.4

385.01

12 (405)

12 (2317)

36

0.333

0.9028

123

36

26

77.53

455.09

12 (460)

12 (2739)

35

0.333

0.9026

124

36

27

87.47

533.8

12 (520)

12 (3211)

35

0.333

0.9024

125

36

28

98.12

622.46

12 (584)

12 (3743)

35

0.333

0.9023

126

36

29

109.8

721.17

12 (655)

12 (4333)

35

0.333

0.9021

127

36

30

122.22

831.67

12 (730)

12 (4995)

35

0.333

0.902

128

36

31

135.89

953.89

12 (814)

12 (5725)

35

0.333

0.9017

129

36

32

150.22

1089.78

12 (901)

12 (6539)

35

0.333

0.9016

130

36

33

165.33

1240

12 (992)

12 (7440)

35

0.333

0.9015

131†

36

34

181.33

1405.33

12 (1088)

12 (8432)

35

0.333

0.9015

132†

36

35

198.33

1586.67

12 (1190)

12 (9520)

35

0.333

0.9015

133

40

4

0

0.04

0 (4)

8 (1)

6

0.2

134

40

5

0

0.2

0 (10)

8 (5)

10

0.2

0.958

135

40

6

0

0.6

0 (20)

8 (15)

15

0.2

0.958

136

40

7

0

1.4

0 (35)

8 (35)

21

0.2

0.9583

137

40

8

0

2.8

0 (56)

8 (70)

25

0.2

0.9583

138

40

9

0

5.04

0 (84)

8 (126)

27

0.2

0.9583

139

40

10

0

8.4

0 (120)

8 (210)

27

0.2

0.9583

140

40

11

1.8

15.2

8 (45)

16 (37)

29

0.4

0.9276

141

40

12

2.48

23

8 (62)

16 (56)

30

0.4

0.9263

142

40

13

3.28

33.4

8 (82)

16 (82)

31

0.4

0.9256

143

40

14

4.2

47.12

8 (105)

16 (118)

32

0.4

0.925

144

40

15

5.32

64.12

8 (133)

16 (160)

33

0.4

0.9248

145

40

16

6.56

85.6

8 (164)

16 (214)

34

0.4

0.9247

146

40

17

8

112

8 (200)

16 (280)

35

0.4

0.9246

\(\#\)

\(n\)

\(m\)

A\(_3\)

A\(_4\)

M\(_3\)

M\(_4\)

df(2FI)

\(r_{\textrm{worst}}\)

PIC\(_5\)

147

40

18

9.6

144

8 (240)

16 (360)

36

0.4

0.9246

148†

40

19

11.4

182.4

8 (285)

16 (456)

37

0.4

0.9246

149†

40

20

11.4

228

8 (285)

16 (570)

38

0.4

0.9283

150

40

21

35.32

161.96

16 (38)

24 (14)

39

0.6

0.9145

151

40

22

40.8

198.2

16 (43)

24 (17)

39

0.6

0.9147

152

40

23

47.16

239.08

16 (54)

24 (20)

39

0.6

0.9144

153

40

24

53.76

288.64

16 (62)

24 (24)

39

0.6

0.9144

154

40

25

61.92

342.48

16 (72)

24 (31)

39

0.6

0.9136

155

40

26

70.36

404.04

16 (84)

24 (33)

39

0.6

0.9133

156

40

27

79.16

474.72

16 (97)

24 (40)

39

0.6

0.9133

157

40

28

88.08

553.72

16 (109)

24 (49)

39

0.6

0.9137

158

40

29

98.72

641.32

16 (121)

24 (53)

39

0.6

0.9135

159

40

30

109.92

740.52

16 (139)

24 (63)

39

0.6

0.9133

160

40

31

121.24

850.52

16 (154)

24 (72)

39

0.6

0.9135

161

40

32

134

971.68

16 (173)

24 (82)

39

0.6

0.9134

162

40

33

147.36

1105.92

16 (194)

24 (93)

39

0.6

0.9134

163

40

34

161.64

1253.48

16 (216)

24 (107)

39

0.6

0.9134

164

40

35

176.92

1415.12

16 (240)

24 (123)

39

0.6

0.9134

165

40

36

192.96

1592.04

16 (266)

24 (137)

39

0.6

0.9134

166

40

37

210

1785

16 (294)

24 (153)

39

0.6

0.9133

167†

40

38

228

1995

16 (323)

24 (171)

39

0.6

0.9133

168†

40

39

247

2223

16 (361)

24 (171)

39

0.6

0.9133

169

44

4

0.03

0.01

4 (4)

4 (1)

6

0.091

170

44

5

0.08

0.04

4 (10)

4 (5)

10

0.091

0.976

171

44

6

0.17

0.12

4 (20)

4 (15)

15

0.091

0.9763

172

44

7

0.29

0.29

4 (35)

4 (35)

21

0.091

0.9762

173

44

8

0.46

1.04

4 (56)

12 (7)

28

0.273

0.9691

174

44

9

0.69

2.63

4 (84)

12 (24)

36

0.273

0.9625

175

44

10

0.99

6.17

4 (120)

12 (67)

42

0.273

0.9531

176

44

11

1.63

9.93

12 (4)

12 (109)

43

0.273

0.9488

177

44

12

4.2

12.16

12 (36)

12 (122)

43

0.273

0.935

178

44

13

5.67

18.6

12 (50)

12 (192)

43

0.273

0.9316

179

44

14

7.5

25.33

12 (68)

12 (258)

43

0.273

0.9307

180

44

15

9.58

34.36

12 (88)

12 (349)

43

0.273

0.9298

181

44

16

12.1

45.59

12 (113)

12 (462)

43

0.273

0.9288

182

44

17

15.01

59.6

12 (142)

12 (604)

43

0.273

0.9277

183

44

18

18.38

73.95

12 (176)

12 (736)

43

0.273

0.9277

184

44

19

22.29

96.36

12 (216)

12 (973)

43

0.273

0.9259

185

44

20

26.21

119.31

12 (254)

12 (1199)

43

0.273

0.9262

186

44

21

30.83

149.23

12 (300)

12 (1509)

43

0.273

0.9254

187

44

22

36.07

180.19

12 (353)

12 (1811)

43

0.273

0.9252

188

44

23

41.61

216.59

12 (408)

12 (2169)

43

0.273

0.9252

189

44

24

47.8

261.04

12 (470)

12 (2620)

43

0.273

0.9249

190

44

25

54.71

309.37

12 (540)

12 (3098)

43

0.273

0.9246

191

44

26

62.08

366.07

12 (614)

12 (3668)

43

0.273

0.9244

192

44

27

69.86

430.66

12 (691)

12 (4320)

43

0.273

0.9243

193

44

28

78.71

500.26

12 (781)

12 (5007)

43

0.273

0.9241

194

44

29

87.92

580.75

12 (873)

12 (5815)

43

0.273

0.924

195

44

30

97.95

669.07

12 (974)

12 (6694)

43

0.273

0.9239

196

44

31

108.55

768.47

12 (1080)

12 (7690)

43

0.273

0.9238

197

44

32

120.07

878.02

12 (1196)

12 (8785)

43

0.273

0.9237

198

44

33

132.3

999.27

12 (1319)

12 (9999)

43

0.273

0.9236

199

44

34

145.26

1131.83

12 (1449)

12 (11322)

43

0.273

0.9236

200

44

35

159.02

1277.69

12 (1587)

12 (12780)

43

0.273

0.9235

\(\#\)

\(n\)

\(m\)

A\(_3\)

A\(_4\)

M\(_3\)

M\(_4\)

df(2FI)

\(r_{\textrm{worst}}\)

PIC\(_5\)

201

44

36

173.65

1437.17

12 (1734)

12 (14374)

43

0.273

0.9235

202

44

37

189.11

1611.35

12 (1889)

12 (16116)

43

0.273

0.9234

203

44

38

205.52

1800.52

12 (2054)

12 (18006)

43

0.273

0.9234

204

44

39

222.77

2006.24

12 (2227)

12 (20063)

43

0.273

0.9233

205

44

40

240.93

2229.07

12 (2409)

12 (22291)

43

0.273

0.9233

206

44

41

260

2470

12 (2600)

12 (24700)

43

0.273

0.9233

207†

44

42

280

2730

12 (2800)

12 (27300)

43

0.273

0.9233

208†

44

43

301

3010

12 (3010)

12 (30100)

43

0.273

0.9233

209

48

4

0

0

0

0

6

0

210

48

5

0

0

0

0

10

0

1

211

48

6

0

0.11

0

16 (1)

15

0.333

0.9927

212

48

7

0

0.33

0

16 (3)

21

0.333

0.9906

213

48

8

0

1.22

0

16 (11)

27

0.333

0.9819

214

48

9

0

2.44

0

16 (22)

29

0.333

0.9798

215

48

10

0

5.33

0

16 (48)

31

0.333

0.973

216

48

11

0

9.11

0

16 (82)

32

0.333

0.9706

217

48

12

0

15.33

0

16 (138)

33

0.333

0.9668

218

48

13

0

23

0

16 (207)

34

0.333

0.9655

219

48

14

2.72

40.06

8 (98)

16 (289)

36

0.333

0.9422

220

48

15

3.5

53.72

8 (126)

16 (385)

37

0.333

0.9425

221

48

16

4.33

71.94

8 (156)

16 (517)

38

0.333

0.9422

222

48

17

5.33

94.06

8 (192)

16 (676)

39

0.333

0.942

223

48

18

6.42

121.31

8 (231)

16 (873)

40

0.333

0.9418

224

48

19

7.67

153.67

8 (276)

16 (1106)

41

0.333

0.9417

225

48

20

9.03

192.25

8 (325)

16 (1384)

42

0.333

0.9417

226

48

21

10.56

237.5

8 (380)

16 (1710)

43

0.333

0.9416

227

48

22

12.22

290.28

8 (440)

16 (2090)

44

0.333

0.9416

228†

48

23

14.06

351.39

8 (506)

16 (2530)

45

0.333

0.9416

229†

48

24

14.06

421.67

8 (506)

16 (3036)

46

0.333

0.9437

230

48

25

49.39

281.67

16 (135)

16 (852)

47

0.333

0.9323

231

48

26

56.22

334.61

16 (156)

16 (1016)

47

0.333

0.9319

232

48

27

63.22

393.5

16 (176)

16 (1201)

47

0.333

0.9318

233

48

28

70.78

457.56

16 (197)

16 (1387)

47

0.333

0.9319

234

48

29

79.44

530.39

16 (227)

16 (1600)

47

0.333

0.9316

235

48

30

88.42

612.36

16 (255)

16 (1852)

47

0.333

0.9316

236

48

31

98.5

700.78

16 (285)

16 (2108)

47

0.333

0.9313

237

48

32

109.03

800.58

16 (317)

16 (2412)

47

0.333

0.9312

238

48

33

119.83

911.33

16 (350)

16 (2743)

47

0.333

0.9312

239

48

34

131.58

1032.08

16 (386)

16 (3104)

47

0.333

0.9312

240

48

35

144.44

1164.44

16 (425)

16 (3499)

47

0.333

0.931

241

48

36

157.64

1310.08

16 (465)

16 (3938)

47

0.333

0.931

242

48

37

171.81

1468.56

16 (509)

16 (4413)

47

0.333

0.9309

243

48

38

186.72

1641

16 (554)

16 (4929)

47

0.333

0.9309

244

48

39

202.08

1828.94

16 (602)

16 (5490)

47

0.333

0.9309

245

48

40

219.06

2031.28

16 (653)

16 (6098)

47

0.333

0.9308

246

48

41

236.47

2250.94

16 (706)

16 (6757)

47

0.333

0.9308

247

48

42

254.78

2487.83

16 (762)

16 (7467)

47

0.333

0.9307

248

48

43

274.06

2742.61

16 (821)

16 (8229)

47

0.333

0.9307

249

48

44

294.22

3016.78

16 (882)

16 (9051)

47

0.333

0.9307

250

48

45

315.33

3311

16 (946)

16 (9933)

47

0.333

0.9307

251†

48

46

337.33

3626.33

16 (1012)

16 (10879)

47

0.333

0.9307

252†

48

47

360.33

3963.67

16 (1081)

16 (11891)

47

0.333

0.9307

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, NK., Pham, TD. & Vuong, M.P. A Catalog of 2-Level Orthogonal Minimally Aliased Designs with Small Runs. J Stat Theory Pract 17, 26 (2023). https://doi.org/10.1007/s42519-023-00321-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-023-00321-y

Keywords

Navigation