Log in

Propagation of SH Wave in a Rotating Functionally Graded Magneto-Electro-Elastic Structure with Imperfect Interface

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The SH waves in a rotating functionally graded magneto-electro-elastic system comprising an elastic substrate and functionally graded magneto-electro-elastic layer varying linearly are studied analytically. The layer and substrate are assumed that they are not perfectly connected at the interface in terms of mechanically, electrically, and magnetically.

Methods

Dispersion relations have been obtained for four cases of electrically open and magnetically open, electrically short and magnetically short, electrically open and magnetically short, and electrically short and magnetically open situations with imperfect interfaces. It has been derived utilizing the Bessel function of zero-order for layer and variable separable method for elastic substrate.

Results

Based on the numerical results, the properties of SH waves through the proposed framework and the conditions depending on various physical and geometrical parameters have been examined. Special cases are taken into account for different combinations of imperfections in the interface. The study examines the simultaneous simulated results of several physical parameters, including inhomogeneity, thickness, rotation, phase velocity, and imperfect SH wave interface distribution in the structure under consideration, which were created using Mathematica 7. Graphical representations of the cut-off frequency curves for the first three modes have also been included. The examined model could be helpful for the development of surface acoustic wave (SAW) devices.

Conclusion

The phase velocity curves of the rotating SH wave are impacted by distinct parameters such as inhomogeneity parameter, thickness, rotation parameter, and imperfect interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

My manuscript has no associated data.

Abbreviations

\(\rho _i\) :

Mass density

\(T_{ij}\) :

Stress tensor

\(u_i\) :

Displacement vector components

\(D_{i}\) :

ith-directed mechanical and electric displacements

\(B_{i}\) :

ith-directed magnetical displacements

\(C_{ij}\) :

Elastic constant

\(e_{ij}\) :

Piezoelectric constant

\(\kappa _{ij}\) :

Dielectric constants

\(\mu _{ij}\) :

Magnetic permittivity

\(h_{ij}\) :

Piezomagnetic constants

\(\beta _{ij}\) :

Electromagnetic constants

\(S_{ij}\) :

Strain tensor

\(E_i\) :

Elastic field intensity

\(H_i\) :

Magnetic field intensity

\(\phi _i\) :

Electrostatic potential

\(\psi _i\) :

The magnetic potential

\(k\left( =\frac{2 \pi }{\lambda }\right)\) :

Wave number

\(\lambda\) :

Wavelength

c :

Phase velocity

\(\kappa _0\) :

Vacuum dielectric constant

\(\Omega\) :

Rotation parameter

References

  1. Van Suchtelen J (1972) Product properties: a new application of composite materials. Phillips Res Reports 27:28–37

    Google Scholar 

  2. Van Run AM, Terrell DR, Scholing JH (1974) An in situ grown eutectic magnetoelectric composite material: part 2 physical properties. J Mater Sci 9:1710–4. https://doi.org/10.1007/BF00540771

    Article  Google Scholar 

  3. Bracke LP, Van Vliet RG (1981) A broadband magneto-electric transducer using a composite material. Int J Electron Theoret Exp 51(3):255–62. https://doi.org/10.1080/00207218108901330

    Article  Google Scholar 

  4. Datta SK, Shah AH, Bratton RL, Chakraborty T (1988) Wave propagation in laminated composite plates. J Acoust Soc Am 83(6):2020–6. https://doi.org/10.1121/1.396382

    Article  Google Scholar 

  5. Li JY (2000) Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int J Eng Sci 38(18):1993–2011. https://doi.org/10.1016/S0020-7225(00)00014-8

    Article  Google Scholar 

  6. **xi L, **anglin L, Yongbin Z (2001) Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int J Eng Sci 39(12):1405–18. https://doi.org/10.1016/S0020-7225(01)00005-2

    Article  Google Scholar 

  7. Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43(3–4):321–39. https://doi.org/10.1016/j.ijengsci.2004.09.006

    Article  Google Scholar 

  8. Bhangale RK, Ganesan N (2006) Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. J Sound Vib 294(4–5):1016–38. https://doi.org/10.1016/j.jsv.2005.12.030

    Article  Google Scholar 

  9. Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45(2–8):467–85. https://doi.org/10.1016/j.ijengsci.2007.03.005

    Article  Google Scholar 

  10. Chen J, Pan E, Chen H (2007) Wave propagation in magneto-electro-elastic multilayered plates. Int J Solids Struct 44(3–4):1073–85. https://doi.org/10.1016/j.ijsolstr.2006.06.003

    Article  Google Scholar 

  11. Melkumyan A (2007) Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. Int J Solids Struct 44(10):3594–9. https://doi.org/10.1016/j.ijsolstr.2006.09.016

    Article  Google Scholar 

  12. Danoyan ZN, Piliposian GT (2008) Surface electro-elastic shear horizontal waves in a layered structure with a piezoelectric substrate and a hard dielectric layer. Int J Solids Struct 45(2):431–41. https://doi.org/10.1016/j.ijsolstr.2007.08.036

    Article  Google Scholar 

  13. Lee BC, Staszewski WJ (2007) Lamb wave propagation modelling for damage detection. II: damage monitoring strategy. Smart Mater Struct 16(2):260. https://doi.org/10.1088/0964-1726/16/2/004

    Article  Google Scholar 

  14. Hu N, Shimomukai T, Yan C, Fukunaga H (2008) Identification of delamination position in cross-ply laminated composite beams using S0 Lamb mode. Compos Sci Technol 68(6):1548–54. https://doi.org/10.1016/j.compscitech.2007.10.015

    Article  Google Scholar 

  15. Komatitsch D, Barnes C, Tromp J (2000) Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 65(4):1251–60. https://doi.org/10.1190/1.1444816

    Article  Google Scholar 

  16. Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1D structures using spectral finite elements. J Sound Vib 300(1–2):88–100. https://doi.org/10.1016/j.jsv.2006.07.031

    Article  Google Scholar 

  17. Li F, Peng H, Sun X, Wang J, Meng G (2012) Wave propagation analysis in composite laminates containing a delamination using a three-dimensional spectral element method. Math Probl Eng. https://doi.org/10.1155/2012/659849

    Article  MathSciNet  Google Scholar 

  18. Akbas SD (2015) Wave propagation of a functionally graded beam in thermal environments. Steel Compos Struct 19(6):1421–47. https://doi.org/10.12989/scs.2015.19.6.1421

    Article  Google Scholar 

  19. Akbaş ŞD (2016) Wave propagation in edge cracked functionally graded beams under impact force. J Vib Control 22(10):2443–57. https://doi.org/10.1177/1077546314547531

    Article  MathSciNet  Google Scholar 

  20. Wu CP, Chen SJ, Chiu KH (2010) Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech Res Commun 37(1):54–60. https://doi.org/10.1016/j.mechrescom.2009.10.003

    Article  Google Scholar 

  21. Huang DJ, Ding HJ, Chen WQ (2010) Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur J Mech A/Solids 29(3):356–69. https://doi.org/10.1016/j.euromechsol.2009.12.002

    Article  Google Scholar 

  22. Zhao L, Chen WQ (2010) Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework. Compos Struct 92(7):1753–61. https://doi.org/10.1016/j.compstruct.2009.11.029

    Article  Google Scholar 

  23. Li L, Wei PJ (2014) Surface wave speed of functionally graded magneto-electro-elastic materials with initial stresses. J Theoret Appl Mech 44(3):49–64. https://doi.org/10.2478/jtam-2014-0016

    Article  MathSciNet  Google Scholar 

  24. Li L, Wei PJ (2014) The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids. J Sound Vib 333(8):2312–26. https://doi.org/10.1016/j.jsv.2013.12.005

    Article  Google Scholar 

  25. Chen J, Guo J, Pan E (2017) Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J Sound Vib 400:550–63. https://doi.org/10.1016/j.jsv.2017.04.001

    Article  Google Scholar 

  26. Yang ZX, Dang PF, Han QK, ** ZH (2018) Natural characteristics analysis of magneto-electro-elastic multilayered plate using analytical and finite element method. Compos Struct 185:411–20. https://doi.org/10.1016/j.compstruct.2017.11.031

    Article  Google Scholar 

  27. Vinyas M (2021) Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Arch Comput Methods Eng 28(3):1205–48. https://doi.org/10.1007/s11831-020-09406-4

    Article  MathSciNet  Google Scholar 

  28. Othmani C, Zhang H, Lü C, Wang YQ, Kamali AR (2022) Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites-A review. Compos Struct 286:115245. https://doi.org/10.1016/j.compstruct.2022.115245

    Article  Google Scholar 

  29. Chaki MS, Bravo-Castillero J (2023) A mathematical analysis of anti-plane surface wave in a magneto-electro-elastic layered structure with non-perfect and locally perturbed interface. Eur J Mech A/Solids 97:104820. https://doi.org/10.1016/j.euromechsol.2022.104820

    Article  MathSciNet  Google Scholar 

  30. Hemalatha K, Kumar S, Prakash D (2023) Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate. Forces Mech 10:100171. https://doi.org/10.1016/j.finmec.2023.100171

    Article  Google Scholar 

  31. Hemalatha K, Kumar S, Kim I (2023) Study of SH-wave in a pre-stressed anisotropic magnetoelastic layer sandwich by heterogeneous semi-infinite media. Math Comput Simul. https://doi.org/10.1016/j.matcom.2023.08.021

    Article  Google Scholar 

  32. Hemalatha K, Kumar S, Ahamad S (2023) SH-wave-induced crack propagation in a magnetoelastic material under initial stress. Mech Solids 58(5):1894–911. https://doi.org/10.3103/S0025654423600940

    Article  Google Scholar 

  33. Huang Y, Li XF, Lee KY (2009) Interfacial shear horizontal (SH) waves propagating in a two-phase piezoelectric/piezomagnetic structure with an imperfect interface. Philos Mag Lett 89(2):95–103. https://doi.org/10.1080/09500830802555702

    Article  Google Scholar 

  34. Li YD, Lee KY (2010) Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Ultrasonics 50(4–5):473–8. https://doi.org/10.1016/j.ultras.2009.10.006

    Article  Google Scholar 

  35. Liu J, Wang Y, Wang B (2010) Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans Ultrasonics Ferroelectr Freq Control 57(8):1875–9. https://doi.org/10.1109/TUFFC.2010.1627

    Article  Google Scholar 

  36. Sun WH, Ju GL, Pan JW, Li YD (2011) Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite. Ultrasonics 51(7):831–8. https://doi.org/10.1016/j.ultras.2011.04.002

    Article  Google Scholar 

  37. Otero JA, Calas H, Rodríguez-Ramos R, Bravo J, Aguiar AR, Monsivais G (2011) Dispersion relations for SH waves on a magnetoelectroelastic heterostructure with imperfect interfaces. J Mech Mater Struct 6(7):969–93. https://doi.org/10.2140/jomms.2011.6.969

    Article  Google Scholar 

  38. Nie G, Liu J, Fang X, An Z (2012) Shear horizontal (SH) waves propagating in piezoelectric-piezomagnetic bilayer system with an imperfect interface. Acta Mech 223(9):1999–2009. https://doi.org/10.1007/s00707-012-0680-6

    Article  MathSciNet  Google Scholar 

  39. Ding J, Wu B, He C (2016) Reflection and transmission coefficients of the SH0 mode in the adhesive structures with imperfect interface. Ultrasonics 70:248–57. https://doi.org/10.1016/j.ultras.2016.05.010

    Article  Google Scholar 

  40. Kumar S, Pal PC, Majhi S (2017) Reflection and transmission of SH-waves at a corrugated interface between two semi-infinite anisotropic magnetoelastic half-spaces. Waves Random Complex Media 27(2):339–58. https://doi.org/10.1080/17455030.2016.1245454

    Article  MathSciNet  Google Scholar 

  41. Pang Y, Feng W, Liu J, Zhang C (2019) SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface. Waves Random Complex Media 29(3):580–94. https://doi.org/10.1080/17455030.2018.1539277

    Article  MathSciNet  Google Scholar 

  42. Singhal A, Sahu SA, Chaudhary S, Baroi J (2019) Initial and couple stress influence on the surface waves transmission in material layers with imperfect interface. Mater Res Express 6(10):105713. https://doi.org/10.1088/2053-1591/ab40e2

    Article  Google Scholar 

  43. Tian R, Liu J, Pan E, Wang Y (2020) SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces. Eur J Mech A/Solids 81:103961. https://doi.org/10.1016/j.euromechsol.2020.103961

    Article  MathSciNet  Google Scholar 

  44. Rakshit S, Mistri KC, Das A, Lakshman A (2022) Effect of interfacial imperfections on SH-wave propagation in a porous piezoelectric composite. Mech Adv Mater Struct 29(25):4008–18. https://doi.org/10.1080/15376494.2021.1916138

    Article  Google Scholar 

  45. Kumawat S, Vishwakarma SK (2023) Circumferential SH wave in piezo-reinforced composite structure with imperfect interface bonding. Appl Math Modell 123:311–31. https://doi.org/10.1016/j.apm.2023.06.034

    Article  MathSciNet  Google Scholar 

  46. Hemalatha K, Kumar S, Akshaya A (2023) Rayleigh wave at imperfectly corrugated interface in FGPM structure. Coupled Syst Mech 12(4):337. https://doi.org/10.12989/csm.2023.12.4.337

    Article  Google Scholar 

  47. Ting T (2004) Surface waves in a rotating anisotropic elastic half-space. Wave Motion 40(4):329–46. https://doi.org/10.1016/j.wavemoti.2003.10.005

    Article  MathSciNet  Google Scholar 

  48. Sharma JN, Thakur MD (2006) Effect of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media. J Sound Vib 296(4–5):871–87. https://doi.org/10.1016/j.jsv.2006.03.014

    Article  Google Scholar 

  49. Sharma JN, Walia V (2007) Effect of rotation on Rayleigh waves in piezothermoelastic half space. Int J Solids Struct 44(3–4):1060–72. https://doi.org/10.1016/j.ijsolstr.2006.06.005

    Article  Google Scholar 

  50. Sharma JN, Walia V, Gupta SK (2008) Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. Int J Mech Sci 50(3):433–44. https://doi.org/10.1016/j.ijmecsci.2007.10.001

    Article  Google Scholar 

  51. Chaudhary S, Sahu SA, Singhal A (2018) On secular equation of SH waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface. J Intell Mater Syst Struct 29(10):2223–35. https://doi.org/10.1177/1045389X18758192

    Article  Google Scholar 

  52. Chaudhary S, Sahu SA, Singhal A, Nirwal S (2019) Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach. Mater Res Express 6(10):105704. https://doi.org/10.1088/2053-1591/ab3880

    Article  Google Scholar 

  53. Singh B (2021) Propagation of waves in an incompressible rotating transversely isotropic nonlocal elastic solid. Vietnam J Mech 43(3):237–52. https://doi.org/10.15625/0866-7136/15533

    Article  Google Scholar 

Download references

Acknowledgements

SRMIST, Kattankulathur, India, is heartily acknowledged by one of the authors for giving the best research facilities and a time studying to carrying out our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Ethics declarations

Conflict of interest

The authors declared no potential Conflict of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}{} & {} q=\sqrt{\dfrac{\rho _2(c^2k^2+\Omega ^2+2i\Omega kc)-C_{44}^{(2)}}{C_{44}^{(2)}}}.\\{} & {} a_{11}=ik\delta (1-\alpha h)\left( \overline{C_{44}^{(10)}}+\text {m}e_{15}^{(10)}+\text {n}h_{15}^{(10)}\right) J_0'(\eta _1),\\{} & {} a_{12}=-ik\delta (1-\alpha h)\left( \overline{C_{44}^{(10)}}+\text {m}e_{15}^{(10)}+\text {n}h_{15}^{(10)}\right) Y_0'(\eta _1),\\{} & {} a_{13}=ik(1-\alpha h)e_{15}^{(10)}J_0'(\gamma _1),\,a_{14}=-ik(1-\alpha h)e_{15}^{(10)}Y_0'(\gamma _1),\\ {}{} & {} a_{15}=ik(1-\alpha h)h_{15}^{(10)}J_0'(\gamma _1),\\{} & {} a_{16}=-ik(1-\alpha h)h_{15}^{(10)}Y_0'(\gamma _1),\\{} & {} a_{21}=ik\delta (1-\alpha h)\left( e_{15}^{(10)}-\text {m}\kappa _{11}^{(10)}-\text {n}\beta _{11}^{(10)}\right) J_0'(\eta _1),\\{} & {} a_{22}=ik\delta (1-\alpha h)\left( e_{15}^{(10)}-\text {m}\kappa _{11}^{(10)}-\text {n}\beta _{11}^{(10)}\right) Y_0'(\eta _1),\\ {}{} & {} a_{23}=-ik(1-\alpha h)\kappa _{11}^{(10)}J_0'(\gamma _1),\\{} & {} a_{24}=ik(1-\alpha h)\kappa _{11}^{(10)}Y_0'(\gamma _1), a_{25}=-ik(1-\alpha h)\beta _{11}^{(10)}J_0'(\gamma _1),\\ {}{} & {} a_{26}=ik(1-\alpha h)\beta _{11}^{(10)}Y_0'(\gamma _1),\\{} & {} a_{210}=k\kappa _0e^{-kh},\, a_{31}=\text {m}J_0(\eta _1),\,a_{32}=\text {m}Y_0(\eta ),\\ {}{} & {} a_{33}=J_0(\gamma _1),\,a_{34}=Y_0(\gamma _1),\,a_{310}=-e^{-kh},\\{} & {} a_{41}=ik\delta (1-\alpha h)\left( h_{15}^{(10)}-\text {m}\beta _{11}^{(10)}-\text {n}\mu _{11}^{(10)}\right) J_0'(\eta _1),\\ {}{} & {} a_{42}=-ik\delta (1-\alpha h)\left( h_{15}^{(10)}-\text {m}\beta _{11}^{(10)}-\text {n}\mu _{11}^{(10)}\right) Y_0'(\eta _1),\\{} & {} a_{43}=-ik(1-\alpha h)\beta _{11}^{(10)}J_0'(\gamma _1),\,a_{44}=ik(1-\alpha h)\beta _{11}^{(10)}Y_0'(\gamma _1),\\ {}{} & {} a_{45}=-ik(1-\alpha h)\mu _{11}^{(10)}J_0'(\gamma _1),\\{} & {} a_{46}=ik(1-\alpha h)\mu _{11}^{(10)}Y_0'(\gamma _1),\, a_{411}=k\mu _0e^{-kh}, a_{51}=\text {n}J_0(\eta _1), \\ {}{} & {} a_{52}=\text {n}Y_0(\eta _1),\,a_{55}=J_0(\gamma _1),\,a_{56}=Y_0(\gamma _1),\\{} & {} a_{511}=-e^{-kh},\,a_{61}=-I_m J_0(\eta _2),\, a_{62}=-I_m Y_0(\eta _2),\\ {}{} & {} a_{67}=I_m-q C_{44}^{(2)},\,a_{71}=-\text {m}I_e J_0(\eta _2),\, a_{72}=-\text {m}I_e Y_0(\eta _2),\\{} & {} a_{73}=-I_e J_0(\gamma _2),\, a_{74}=-I_e Y_0(\gamma _2),\,a_{78}=I_e+k\kappa _{11}^{(2)},\\ {}{} & {} a_{81}=-\text {n}I_{mg} J_0(\eta _2),\, a_{82}=-\text {n}I_{mg} Y_0(\eta _2),\\{} & {} a_{85}=-I_{mg} J_0(\gamma _2),\, a_{86}=-I_{mg}Y_0(\gamma _2),\,a_{89}=I_{mg}+k\mu _{11}^{(2)}, \\ {}{} & {} a_{91}=ik\delta \left( \overline{C_{44}^{(10)}}+\text {m}e_{15}^{(10)}+\text {n}h_{15}^{(10)}\right) J_0'(\eta _2),\\{} & {} a_{92}=-ik\delta \left( \overline{C_{44}^{(10)}}+\text {m}e_{15}^{(10)}+\text {n}h_{15}^{(10)}\right) Y_0'(\eta _2),\\ {}{} & {} a_{93}=ike_{15}^{(10)}J_0'(\gamma _2),\,a_{94}=-ike_{15}^{(10)}Y_0'(\gamma _2),\\{} & {} a_{95}=ik h_{15}^{(10)}J_0'(\gamma _2),\, a_{96}=-ikh_{15}^{(10)}Y_0'(\gamma _2), a_{98}=q C_{44}^{(2)},\\ {}{} & {} a_{101}=ik\delta \left( e_{15}^{(10)}-\text {m}\kappa _{11}^{(10)}-\text {n}\beta _{11}^{(10)}\right) J_0'(\eta _2),\\{} & {} a_{102}=ik\delta \left( e_{15}^{(10)}-\text {m}\kappa _{11}^{(10)}-\text {n}\beta _{11}^{(10)}\right) Y_0'(\eta _2),\\ {}{} & {} a_{103}=-ik\kappa _{11}^{(10)}J_0'(\gamma _2),\, a_{104}=ik\kappa _{11}^{(10)}Y_0'(\gamma _2),\\{} & {} a_{105}=-ik\beta _{11}^{(10)}J_0'(\gamma _2),\, a_{106}=ik\beta _{11}^{(10)}Y_0'(\gamma _2),\, a_{108}=-k\kappa _{11}^{(2)},\\ {}{} & {} a_{111}=ik\delta \left( h_{15}^{(10)}-\text {m}\beta _{11}^{(10)}-\text {n}\mu _{11}^{(10)}\right) J_0'(\eta _2),\\{} & {} a_{112}=-ik\delta \left( h_{15}^{(10)}-\text {m}\beta _{11}^{(10)}-\text {n}\mu _{11}^{(10)}\right) Y_0'(\eta _2),\\ {}{} & {} a_{113}=-ik\beta _{11}^{(10)}J_0'(\gamma _2),\,a_{114}=ik\beta _{11}^{(10)}Y_0'(\gamma _2),\\{} & {} a_{115}=-ik\mu _{11}^{(10)}J_0'(\gamma _2),\, a_{116}=ik\mu _{11}^{(10)}Y_0'(\gamma _2),\, a_{119}=k\mu _{11}^{(2)}. \\{} & {} \eta _1=ik\delta \left( \dfrac{1-\alpha h}{\alpha }\right) ,\,\eta _2=\dfrac{ik\delta }{\alpha },\,\gamma _1=ik \left( \dfrac{1-\alpha h}{\alpha }\right) ,\gamma _2=\dfrac{ik}{\alpha }.\\{} & {} b_{ij}=a_{ef},\forall \, i,j,f=1,2,\ldots ,9;\, e=1,3,5,6,7,8,9,10,11.\\{} & {} c_{ij}=a_{ef},\forall \, i,j,f=1,2,\ldots ,10;\, e=1,2,3,5,6,7,8,9,10. d_{ij}=a_{ef},\forall \, i,j,f=1,2,\ldots ,10;\\ {}{} & {} e=1,3,4,5,6,7,8,9,10. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, K., Kumar, S. Propagation of SH Wave in a Rotating Functionally Graded Magneto-Electro-Elastic Structure with Imperfect Interface. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01365-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01365-5

Keywords

Navigation