Log in

Study on Seismic Ground Motion in the Layered Elastic Ground of S-Wave Incident Under the Thermal Effect

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Previous studies on the seismic response of the site were carried out under isothermal conditions and homogeneous foundations, but there were few studies on the seismic response of the layered site under thermal effect. However, since the coupling effect between temperature and stress–strain affects the wave propagation, and natural soil usually exists in the form of stratification, which has strong stratification characteristics. Therefore, the paper studies the seismic response problem of S-wave incident on the layered elastic ground under thermal effect.

Methods

Based on the wave propagation theory in thermoelastic media, the conversion matrix of amplitude coefficients in layered foundations is derived according to the Helmholtz vector decomposition principle and the transfer matrix method. The analytical solution of the seismic response of S-wave incident on layered elastic foundation under thermal effect is obtained.

Results

The results show that there is a pretty wide gap between the displacement magnification factors obtained under the two theoretical models considering the thermal effect and not considering the thermal effect; the effect of solid relative heat on displacement magnification factors mainly depends on the thermal stability of soil, and the implications of thermal expansion coefficient on displacement magnification factors is closely related to the size of solid relative heat of soil; in addition, the effects of frequency, medium temperature and the arrangement sequence of the soft and hard soil layers on the displacement magnification factors of the ground surface are significant.

Conclusions

This conclusion promotes the application of fluctuation theory in geotechnical engineering seismic resistance, seismic exploration, and other engineering practices and has significant practical value and guiding significance for actual engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Shao Y, Zhou F, Liu H et al (2023) Energy characteristics of reflection and transmission for SV-waves at the interface of layered unsaturated soils. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-01136-8

    Article  Google Scholar 

  2. Shi Z, Cheng Z, Wu J (2022) Numerical evaluation of the effectiveness of periodic wave barriers in pre-stressed saturated soil. J Vib Eng Technol 11:4269–4279

    Article  Google Scholar 

  3. Shu J, Ma Q (2023) Theoretical study of S-wave passing through an elastic wave impeding block in the unsaturated soil. J Vib Eng Technol 11:193–206

    Article  Google Scholar 

  4. Ba Z, Sang Q, Liang J (2022) Seismic analysis of a lined tunnel in a multi-layered TI saturated half-space due to qP1-and qSV-waves. Tunn Undergr Space Technol 119:104248

    Article  Google Scholar 

  5. Liu H, Dai G, Zhou F et al (2023) Kinematic response of pipe pile embedded in fractional-order viscoelastic unsaturated soil subjected to vertically propagating seismic SH-waves. Acta Geotech 18(12):6803–6830

    Article  Google Scholar 

  6. Liu Z, Wang Z, Cheng A et al (2021) The method of fundamental solutions for the elastic wave scattering in a double-porosity dual-permeability medium. Appl Math Model 97:721–740

    Article  MathSciNet  Google Scholar 

  7. Huang L, Liu Z, Wu C et al (2022) A three-dimensional indirect boundary integral equation method for the scattering of seismic waves in a poroelastic layered half-space. Eng Anal Bound Elem 135:167–181

    Article  MathSciNet  Google Scholar 

  8. Yang Y, Ma Q, Ma Y (2023) Seismic ground motion study of free-field earthquakes in unsaturated soils incident with SV wave under thermal effects. Eur Phys J Plus 138(10):927

    Article  Google Scholar 

  9. Duhamel J (1885) Second memoire sur les phenomenon thermo-mechanique. Journal de l’ Ecole Polytechnique 15(2):1–15

    Google Scholar 

  10. Neumann F, Meyer O (1885) Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers. Wentworth Press, Sydney, Australia

    Google Scholar 

  11. Biot M (1956) Thermoelasticity and irreversible thermo-dynamics. J Appl Phys 27:249–253

    Article  ADS  Google Scholar 

  12. Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  Google Scholar 

  13. Green A, Lindsay K (1972) Thermoelasticity. J Elast 2:1–7

    Article  Google Scholar 

  14. Green A, Naghdi P (1885) A re-examination of the basic postulates of thermomechanics. Proc Math and Phys Sci 432:171–194

    MathSciNet  Google Scholar 

  15. Green A, Naghdi P (1993) Thermoelasticity without energy dissipation. J Elast 31(3):189–208

    Article  MathSciNet  Google Scholar 

  16. Tzou D (1995) A unified field approach for heat conduction from macro-to micro-scales. J Heat Trans-T Asme 117(1):8–16

    Article  Google Scholar 

  17. Tzou D (1995) Experimental support for the lagging behavior in heat propagation. J Thermophys Heat Transf 9(4):686–693

    Article  CAS  Google Scholar 

  18. Hetnarski R, Ignaczak J (1999) Generalized thermo-elasticity. J Therm Stress 22:451–476

    Article  Google Scholar 

  19. Abouelregal A (2011) Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. Int J Eng Sci 49(8):781–791

    Article  MathSciNet  Google Scholar 

  20. Sinha A, Sinha S (1974) Reflection of thermoelastic waves at a solid half-space with thermal relaxation. J Phys Earth 22:237–244

    Article  Google Scholar 

  21. Sinha S, Elsibai K (1996) Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times. J Therm Stress 19:763–777

    Article  Google Scholar 

  22. Sinha S, Elsibai K (1997) Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two thermal relaxation times. J Therm Stress 20:129–146

    Article  Google Scholar 

  23. Abd-Alla A, Al-Dawy A (2000) The reflection phen-omena of SV waves in a generalized thermoelastic medium. Int J Math Math Sci 23:529–546

    Article  MathSciNet  Google Scholar 

  24. Sharma J, Kumar V, Dayal C (2003) Reflection of generalized thermoelastic waves from the boundary of a half-space. J Therm Stress 26(10):925–942

    Article  Google Scholar 

  25. Singh B (2005) Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion. J Sound Vib 291(3–5):764–778

    ADS  Google Scholar 

  26. Singh B (2005) Reflection of P and SV waves from free surface of an elastic solid with generalized thermos diffusion. J Earth Syst Sci 114(2):159–168

    Article  ADS  Google Scholar 

  27. Kumar R, Sharma J (2005) Reflection of plane waves from the boundaries of a micropolar thermoelastic half-space without energy dissipation. J Earth Syst Sci 10(4):631–645

    MathSciNet  Google Scholar 

  28. Chakraborty N, Singh C (2011) Reflection and refraction of a plane thermoelastic wave at a solid–solid interface under perfect boundary condition, in presence of normal initial stress. Appl Math Model 35(11):5286–5301

    Article  MathSciNet  Google Scholar 

  29. Hou W, Fu L, Carcione J et al (2022) Reflection and transmission of inhomogeneous plane waves in thermoelastic media. Surv Geophys 44:1897–1917

    Article  ADS  Google Scholar 

  30. Wang X, Zhao F (2022) Comparative study of seismic response of underground structures in single-phase and saturated soils. Sichuan Cem 3:22–23

    Google Scholar 

  31. Yang M (2022) Site response under total reflection of seismic SV waves. **’an University of Technology, China

    Google Scholar 

  32. Wang J, ** F, Zhang C (2003) Dynamic response of an ideal fluid layer located on an elastic half-space-plane P-wave incidence. J Eng Mech 06:12–17

    Google Scholar 

  33. Zhao W, Chen W, Yang D et al (2022) Analytical solution for seismic response of tunnels with composite linings in elastic ground subjected to Rayleigh waves. Soil Dyn Earthq Eng 153:107113

    Article  Google Scholar 

  34. Li Z (2019) Study of fluctuation propagation and seismic response of underground structures in complex layered foundations. Dalian University of Technology, China

    Google Scholar 

  35. Ba Z, Fu J, Liu Y et al (2021) Scattering of elastic spherical P, SV, and SH waves by three-dimensional hill in a layered half-space. Soil Dyn Earthq Eng 147(1):106545

    Article  Google Scholar 

  36. Dong L (2023) Seismic response of a two-layer site under the action of obliquely incident seismic wave. **’an University of Technology, China

    Google Scholar 

  37. Yang Y, Ma Q (2023) Study on seismic ground motion of P-wave incident elastic foundation free field under thermal effect. J Theor Appl Mech 61(4):673–685

    MathSciNet  Google Scholar 

  38. Liu H, Dai H, Zhou F et al (2021) Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium. Eur Phys J Plus 136(11):1–27

    Article  Google Scholar 

  39. Yang ZF, Zhang WP (2017) Study on seismic response characteristics of layered foundation pile structure. Earthq Eng Eng Vib 37(05):178–185

    Google Scholar 

  40. Hou W, Fu L, Wei J et al (2021) Characteristics of wave propagation in thermoelastic media. Geophys J Int 64(04):1364–1374

    Google Scholar 

  41. Zhang Y (2021) Research on key technology of seismic exploration instrument based on distributed sound field sensing. Nan**g University, China

    Google Scholar 

  42. Xu M, Wei D, He C (2021) Axisymmetric steady state dynamic response of layered unsaturated soil foundations. Rock Soil Mech 32(04):1113–1118s

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the financial assistance provided by the Natural Science Foundation of China (No.52168053) and the Qinghai Province Science and Technology Department Project (No. 2024-ZJ-922). The authors also sincerely thank the editors and reviewers for their constructive comments and comments on this article.

Funding

National Natural Science Foundation of China, 52168053, qiang Ma, Qinghai Provincial Department of Science and Technology, 2024-ZJ-922, qiang Ma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest in the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$T_{si11} = ( - \lambda^{{\text{i}}} k_{{{\text{itp1}}}}^{2} - 2\mu^{{\text{i}}} k_{{{\text{itp1z}}}}^{2} - 3K_{{{\text{bi}}}} \beta_{{{\text{Ti}}}} \delta_{{{\text{iTp1}}}} )\exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )$$
$$T_{si12} = ( - \lambda^{{\text{i}}} k_{{{\text{itp}}2}}^{2} - 2\mu^{{\text{i}}} k_{{{\text{itp2z}}}}^{2} - 3K_{{{\text{bi}}}} \beta_{{{\text{Ti}}}} \delta_{{{\text{iTp2}}}} )\exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )\;T_{si13} = 2\mu^{{\text{i}}} k_{{{\text{itsx}}}}^{{}} k_{{{\text{itsz}}}}^{{}} \exp (ik_{{{\text{itsz}}}} H_{{\text{i}}} )$$
$$T_{{{\text{si14}}}} = ( - \lambda^{{\text{i}}} k_{{{\text{irp1}}}}^{2} - 2\mu^{{\text{i}}} k_{{{\text{irp1z}}}}^{2} - 3K_{{{\text{bi}}}} \beta_{{{\text{Ti}}}} \delta_{{{\text{iTp1}}}} )\exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )\,T_{{{\text{si14}}}} = ( - \lambda^{{\text{i}}} k_{{{\text{irp1}}}}^{2} - 2\mu^{{\text{i}}} k_{{{\text{irp1z}}}}^{2} - 3K_{{{\text{bi}}}} \beta_{{{\text{Ti}}}} \delta_{{{\text{iTp1}}}} )\exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )$$
$$T_{si15} = ( - \lambda^{{\text{i}}} k_{{{\text{irp2}}}}^{2} - 2\mu^{{\text{i}}} k_{{{\text{irp2z}}}}^{2} - 3K_{{{\text{bi}}}} \beta_{{{\text{Ti}}}} \delta_{{{\text{iTp2}}}} )\exp ( - ik_{{{\text{irp2z}}}} H_{{\text{i}}} )\;T_{si16} = - 2\mu^{{\text{i}}} k_{{{\text{irsx}}}}^{{}} k_{irsz}^{{}} \exp ( - ik_{{{\text{irsz}}}} H_{{\text{i}}} )$$
$$T_{si21} = 2\mu^{{\text{i}}} k_{{{\text{itp1x}}}}^{{}} k_{{{\text{itp1z}}}}^{{}} \exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )\;T_{si22} = 2\mu^{{\text{i}}} k_{{{\text{itp2x}}}}^{{}} k_{{{\text{itp2z}}}}^{{}} \exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )\;T_{si23} = \mu^{{\text{i}}} (k_{{{\text{itsz}}}}^{2} - k_{{{\text{itsx}}}}^{2} )\exp (ik_{{{\text{itsz}}}} H_{{\text{i}}} )$$
$$T_{si24} = - 2\mu^{{\text{i}}} k_{{{\text{irp1x}}}}^{{}} k_{{{\text{irp1z}}}}^{{}} \exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )\;T_{si25} = - 2\mu^{{\text{i}}} k_{{{\text{irp2x}}}}^{{}} k_{{{\text{irp2z}}}}^{{}} \exp ( - ik_{{{\text{irp2z}}}} H_{{\text{i}}} )\;T_{si26} = \mu^{{\text{i}}} (k_{{{\text{irsz}}}}^{2} - k_{{{\text{irsx}}}}^{2} )\exp ( - ik_{{{\text{irsz}}}} H_{{\text{i}}} )$$
$$T_{si31} = - ik_{{{\text{itp1x}}}}^{{}} \exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )\;T_{si32} = - ik_{{{\text{itp2x}}}}^{{}} \exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )\;T_{si33} = - ik_{{{\text{itsz}}}}^{{}} \exp (ik_{{{\text{itsz}}}} H_{{\text{i}}} )\;T_{si34} = - ik_{{{\text{irp1x}}}}^{{}} \exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )$$
$$T_{si35} = - ik_{{{\text{irp2x}}}}^{{}} \exp ( - ik_{{{\text{irp2z}}}} H_{i} )\;T_{si36} = ik_{{{\text{irsz}}}}^{{}} \exp ( - ik_{{{\text{irsz}}}} H_{{\text{i}}} )\;T_{si41} = ik_{{{\text{itp1z}}}}^{{}} \exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )\;T_{si42} = ik_{{{\text{itp2z}}}}^{{}} \exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )$$
$$T_{si43} = - ik_{{{\text{itsx}}}}^{{}} \exp (ik_{{{\text{itsz}}}} H_{{\text{i}}} )\;T_{si44} = - ik_{{{\text{irp1z}}}}^{{}} \exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )\;T_{si45} = - ik_{{{\text{irp2z}}}}^{{}} \exp ( - ik_{{{\text{irp2z}}}} H_{{\text{i}}} )\;T_{si46} = - ik_{{{\text{irsx}}}}^{{}} \exp ( - ik_{{{\text{irsz}}}} H_{{\text{i}}} )$$
$$T_{si51} = \delta_{{{\text{iTp1}}}} \exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )\;T_{si52} = \delta_{{{\text{iTp2}}}} \exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )\;T_{si53} = 0\;T_{si54} = \delta_{{{\text{iTp1}}}} \exp ( - ik_{{{\text{irp1z}}}} H_{{\text{i}}} )$$
$$T_{si55} = \delta_{{{\text{iTp2}}}} \exp ( - ik_{{{\text{irp2z}}}} H_{{\text{i}}} )\;T_{si56} = 0\;T_{si61} = K_{{\text{i}}} ik_{{{\text{itp1z}}}} \delta_{{{\text{iTp1}}}} \exp (ik_{{{\text{itp1z}}}} H_{{\text{i}}} )\;T_{si62} = K_{{\text{i}}} ik_{{{\text{itp2z}}}} \delta_{{{\text{iTp2}}}} \exp (ik_{{{\text{itp2z}}}} H_{{\text{i}}} )$$
$$T_{si63} = 0\;T_{si64} = - K_{i} ik_{irp1z} \delta_{iTp1} \exp ( - ik_{irp1z} H_{i} )\;T_{si65} = - K_{i} ik_{irp2z} \delta_{iTp2} \exp ( - ik_{irp2z} H_{i} )\;T_{si66} = 0$$

Appendix 2

$$T_{se11} = - k_{{{\text{isx}}}} k_{{{\text{isz}}}} \exp (ik_{{{\text{isz}}}} H)\;T_{{{\text{se12}}}} = ( - \lambda^{e} k_{rp1}^{2} - 2\mu^{e} k_{{{\text{rp1z}}}}^{{2}} - 3K_{{\text{b}}} \beta_{{\text{T}}} \delta_{{{\text{Tp1}}}}^{e} )\exp ( - ik_{{{\text{rp1z}}}} H)$$
$$T_{se13} = ( - \lambda^{e} k_{{{\text{rp2}}}}^{{2}} - 2\mu^{e} k_{{{\text{rp2z}}}}^{2} - 3K_{{\text{b}}} \beta_{{\text{T}}} \delta_{{{\text{Tp1}}}}^{e} )\exp ( - ik_{{{\text{rp2z}}}} H)\;T_{se14} = - 2\mu^{e} k_{{{\text{rsx}}}}^{{}} k_{{{\text{rsz}}}}^{{}} \exp ( - ik_{{{\text{rsz}}}} H)$$
$$T_{se21} = \mu^{e} (k_{{{\text{isz}}}}^{2} - k_{{{\text{isx}}}}^{2} )\exp (ik_{{{\text{isz}}}} H)\;T_{se22} = - 2\mu^{e} k_{{{\text{rp1x}}}} k_{{{\text{rp1z}}}}^{{}} \exp ( - ik_{{{\text{rp1z}}}} H)\;T_{se23} = - 2\mu^{e} k_{{{\text{rp2x}}}}^{{}} k_{{{\text{rp2z}}}}^{{}} \exp ( - ik_{{{\text{rp2z}}}} H)$$
$$T_{se24} = \mu^{e} (k_{{{\text{rsz}}}}^{2} - k_{{{\text{rsx}}}}^{2} )\exp ( - ik_{{{\text{rsz}}}} H)\;T_{se31} = - ik_{{{\text{isz}}}}^{{}} \exp (ik_{{{\text{isz}}}} H)\;T_{se32} = - ik_{{{\text{rp1x}}}}^{{}} \exp ( - ik_{{{\text{rp1z}}}} H)$$
$$T_{se33} = - ik_{{{\text{rp2x}}}}^{{}} \exp ( - ik_{{{\text{rp2z}}}} H)\;T_{se34} = ik_{{{\text{rsz}}}}^{{}} \exp ( - ik_{{{\text{rsz}}}} H)\;T_{se41} = - ik_{{{\text{isx}}}}^{{}} \exp (ik_{{{\text{isz}}}} H)\;T_{se42} = - ik_{{{\text{rp1z}}}}^{{}} \exp ( - ik_{{{\text{rp1z}}}} H)$$
$$T_{se43} = - ik_{{{\text{rp2z}}}}^{{}} \exp ( - ik_{{{\text{rp2z}}}} H)\;T_{se44} = - ik_{{{\text{rsx}}}}^{{}} \exp ( - ik_{{{\text{rsz}}}} H)\;T_{se51} = 0\;T_{se52} = \delta_{{{\text{Tp1}}}}^{e} \exp ( - ik_{{{\text{rp1z}}}} H)$$
$$T_{se53} = \delta_{{{\text{Tp2}}}}^{e} \exp ( - ik_{{{\text{rp2z}}}} H)\;T_{se54} = 0\;T_{se61} = 0\;T_{se62} = - K^{e} ik_{{{\text{rp1z}}}} \delta_{{{\text{Tp1}}}}^{e} \exp ( - ik_{{{\text{rp1z}}}} H)$$
$$T_{se63} = - K^{e} ik_{{{\text{rp2z}}}} \delta_{{{\text{Tp2}}}}^{e} \exp ( - ik_{{{\text{rp2z}}}} H)\;T_{se64} = 0$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, Q. Study on Seismic Ground Motion in the Layered Elastic Ground of S-Wave Incident Under the Thermal Effect. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01306-2

Keywords

Navigation