Log in

Dynamic Analysis of the Longest Viaduct in Algeria Under Spatial Variable Ground Motion According to RPOA and Eurocode 8 Seismic Codes

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

The dynamic response of large-scale structures requires a good representation of seismic excitations. These structures are subjected to spatial variability of seismic ground motion. This seismic variability results from the propagation of seismic waves between the focus and the site. The RPOA (the Algerian Bridge Seismic Regulation Code) and Eurocode 8 (EC8) introduce simplified approaches for spatial variable ground motion.

Purpose

The main objective of this paper is the evaluation of the accuracy of the methods proposed by the RPOA through comparison with the EC8 provisions.

Method

The longest railway viaduct in Algeria is used as a case study in this work. The dynamic analysis based on the modal spectral dynamic method is adopted according to RPOA and Eurocode 8 seismic codes.

Results and conclusion

The results show that the method proposed by RPOA to consider the spatial variability of ground motion clearly overestimates the seismic demand. Therefore, the RPOA method gives internal forces much higher than those calculated from Eurocode 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Documents that provided the data for this work are cited in the bibliographic references.

References

  1. Harichandran RS, Hawwari A, Sweidan BN (1996) Response of Long-Span Bridges to Spatially Varying Ground Motion. J Struct Eng 122:476–484. https://doi.org/10.1061/(asce)0733-9445(1996)122:5(476)

    Article  Google Scholar 

  2. Zendagui D, Berrah MK (2002) Spatial variation of seismic motion induced by propagation of body waves. Soil Dyn Earthq Eng 22:805–811. https://doi.org/10.1016/S0267-7261(02)00102-1

    Article  Google Scholar 

  3. Zerva A (2009) Spatial variation of seismic ground motions: modeling and engineering applications. CRC Press. https://doi.org/10.1201/9781420009910

    Article  Google Scholar 

  4. Konakli K, Der Kiureghian A (2012) Simulation of spatially varying ground motions including incoherence, wave-passage and differential site-response effects. Earthq Eng Struct Dyn 41:495–513. https://doi.org/10.1002/eqe.1141

    Article  Google Scholar 

  5. Derbal R, Meddane N, Zendagui D, Bekkouche A, Djafour M (2007) Etude du comportement dynamique d’un barrage poids-voûte face au mouvement sismique différentiel. 18th French Congress of Mechanics, August, 27 – 31, Grenoble, France [in french]

  6. Derbal R, Benmansour N, Djafour M (2017) Influence de l’Effet de Site sur le Comportement Dynamique des Ponts, 23th French Congress of Mechanics, August, 28 – September 1st, Lille, France [in french]

  7. Derbal R, Benmansour N, Djafour M, Matallah M, Ivorra S (2019) Viaduct seismic response under spatial variable ground motion considering site conditions. Earthq Struct 17:557–566. https://doi.org/10.12989/eas.2019.17.6.557

    Article  Google Scholar 

  8. Benmansour N, Derbal R, Djafour M, Ivorra S, Matallah M (2021) Impact of local site conditions on simulation of non-stationary spatial variable seismic motions. Period Polytech Civ Eng 65:751–760. https://doi.org/10.3311/PPCI.16208

    Article  Google Scholar 

  9. Benmansour N, Djafour M, Bekkouche A, Zendagui D, Benyacoub A (2012) Seismic response evaluation of bridges under differential ground motion: A comparison with the new Algerian provisions. Eur J Environ Civ Eng 16:863–881. https://doi.org/10.1080/19648189.2012.681951

    Article  Google Scholar 

  10. Benmansour N (2013) Effet de la variabilité spatiale du mouvement sismique sur le comportement dynamique des ponts. Doctoral thesis, University of Tlemcen, Algeria [in french]

  11. Derbal R, Benmansour N, Djafour M (2018) Impact of spatial variability of earthquake ground motion on seismic response of a railway bridge. Int J Comput Methods Exp Meas 6:910–920. https://doi.org/10.2495/cmem-v6-n5-910-920

    Article  Google Scholar 

  12. Bi K, Hao H, Ren W (2010) Response of a frame structure on a canyon site to spatially varying ground motions. Struct Eng Mech 36:111–127. https://doi.org/10.12989/sem.2010.36.1.111

    Article  Google Scholar 

  13. Bi K, Hao H (2012) Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions. Probabilistic Eng Mech 29:92–104. https://doi.org/10.1016/j.probengmech.2011.09.002

    Article  Google Scholar 

  14. Der Kiureghian A (1996) A coherency model for spatially varying ground motions. Earthq Eng Struct Dyn 25:99–111. https://doi.org/10.1002/(sici)1096-9845(199601)25:1%3c99::aid-eqe540%3e3.3.co;2-3

    Article  Google Scholar 

  15. Harichandran RS, Vanmarcke EH (1986) Stochastic variation of earthquake ground motion in space and time. J Eng Mech 112:154–174. https://doi.org/10.1061/(asce)0733-9399(1986)112:2(154)

    Article  Google Scholar 

  16. Svay A (2017) Modélisation de la variabilité spatiale du champ sismique pour les etudes d’interaction sol-structure. Doctoral thesis, University of Paris-Saclay (ComUE)

  17. Abrahamson NA, Schneider JF, Stepp JC (1991) Empirical spatial coherency functions for application to soil-structure interaction analyses. Earthq Spectra 7:1–27. https://doi.org/10.1193/1.1585610

    Article  Google Scholar 

  18. Zendagui D, Berrah MK, Kausel E (1999) Stochastic deamplification of spatially varying seismic motions. Soil Dyn Earthq Eng 18:409–421. https://doi.org/10.1016/S0267-7261(99)00015-9

    Article  Google Scholar 

  19. Laouami N, Labbe P (2001) Analytical approach for evaluation of the seismic ground motion coherency function. Soil Dyn Earthq Eng 21:727–733. https://doi.org/10.1016/S0267-7261(01)00041-0

    Article  Google Scholar 

  20. Hao H, Oliveira CS, Penzien J (1989) Multiple-station ground motion processing and simulation based on smart-1 array data. Nucl Eng Des 111:293–310. https://doi.org/10.1016/0029-5493(89)90241-0

    Article  Google Scholar 

  21. Sobczyk K (1991) Stochastic Differential Equations. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-011-3712-6_4

    Book  Google Scholar 

  22. Abrahamson NA (2007) Hard-Rock Coherency Functions Based on the Pinyon Flat Array Data. Palo Alto, CA.

  23. Wang G, Wang Z (2012) Coherency variation with depth at different strong ground motion arrays. Proc. 15th World Conf Earthq Eng

  24. Derbal R, Benmansour N, Djafour M (2022) Simulation of spatially variable artificial earthquake: a case study of different site conditions. Model Civ Environ Eng 16:13–24. https://doi.org/10.2478/mcee-2021-0017

    Article  Google Scholar 

  25. CEN (2005) Eurocode 8: Design provisions of structures for earthquake resistance – Part 2: Bridges (prEN1998-2). Belgium, Brussels

    Google Scholar 

  26. MTP (2010) Règles parasismiques applicables au domaine des ouvrages d’art. Ministère des Travaux Publics, Alger

    Google Scholar 

  27. ANESRIF (2011) Agence Nationale d’Etudes et de Suivi de la Réalisation des Investissements Ferroviaires. Algeria.

  28. MIDAS Corporation (2021) MIDAS/Civil Engineering Software : Bridge Design & Analysis Software.

  29. CEN (2004) Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings (prEN1998-1). Belgium, Brussels

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Djenelbaroud and Mr Khaddam for their contribution to this work. May they find here our consideration and recognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Derbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbal, R., Benmansour, N. & Mohammed Belhadj, A.H. Dynamic Analysis of the Longest Viaduct in Algeria Under Spatial Variable Ground Motion According to RPOA and Eurocode 8 Seismic Codes. J. Vib. Eng. Technol. 12, 5787–5800 (2024). https://doi.org/10.1007/s42417-023-01218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-01218-7

Keywords

Navigation