Log in

Free Flexural Vibration Analysis of Thin Plates Using NURBS-Augmented Finite-Element Method

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

In isogeometric analysis (IGA), the non-uniform rational B-spline (NURBS) basis functions are used for depicting the geometry and the displacement field. As the NURBS basis functions are non-interpolating in nature, the enforcement of essential boundary condition becomes a difficult task. In order to circumvent the above problem, recently the authors Mishra and Barik (Comput 232:105869, 2020; Eng Comput 35:351–362, 2019) proposed a new method called NURBS-augmented finite-element method (NAFEM). The authors have incorporated the non-uniform rational B-spline (NURBS) basis functions for the representation of the geometry and the usual finite-element basis functions are adopted for the field variables as they satisfy the Kronecker-Delta property. This simplifies the implementation of the boundary condition to a great extent. In the present work, NAFEM is extended for free vibration analysis of plates having different geometries and boundary conditions, and the results are found to be in excellent agreement with the existing ones. To showcase the robustness of NAFEM, some arbitrary-shaped plates have also been considered, and the new results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60

Similar content being viewed by others

References

  1. Mishra BP, Barik M (2020) NURBS-Augmented finite element method for static analysis of arbitrary plates. Comput Struct 232:105869 (Mechanics and Modelling of Materials and Structures)

    Google Scholar 

  2. Mishra BP, Barik M (2019) NURBS-Augmented finite element method for stability analysis of arbitrary thin plates. Eng Comput 35(2):351–362

    Google Scholar 

  3. Mukhopadhyay M (1979) A semi-analytic solution for free vibration of annular sector plates. J Sound Vib 63:87–95

    MATH  Google Scholar 

  4. Cheung YK, Tham LG, Li WY (1988) Free vibration and static analysis of general plate by spline finite strip. Comput Mech 3:187–197

    MATH  Google Scholar 

  5. Bert CW, Malik M (1996) The differential quadrature method for irregular domains and application to plate vibration. Int J Mech Sci 38:589–606

    MATH  Google Scholar 

  6. Barik M, Mukhopadhyay M (1998) Finite element free flexural vibration analysis of arbitrary plates. Finite Elem Anal Des 29:137–151

    MATH  Google Scholar 

  7. Barik M (1999) Finite element static, dynamic and stability analyses of arbitrary stiffened plates. Ph.D. thesis, I.I.T., Kharagpur

  8. Lee SJ (2004) Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain. J Sound Vib 278(3):657–684

    Google Scholar 

  9. Liew KM, Wang J, Ng TY, Tan MJ (2004) Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J Sound Vib 276:997–1017

    Google Scholar 

  10. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    MathSciNet  MATH  Google Scholar 

  11. Reali A (2006) An isogeometric analysis approach for the study of structural vibrations. J Earthq Eng 10(sup001):1–30

    Google Scholar 

  12. Hota SS, Padhi P (2007) Vibration of plates with arbitrary shapes of cut-outs. J Sound Vib 302:1030–1036

    Google Scholar 

  13. Sevilla R, Fernández S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76:56–83

    MathSciNet  MATH  Google Scholar 

  14. Lu J (2009) Circular element: isogeometric elements of smooth boundary. Comput Methods Appl Mech Eng 198:2391–2402

    MathSciNet  MATH  Google Scholar 

  15. **ng Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Internat J Numer Methods Eng 80:1718–1742

    MathSciNet  MATH  Google Scholar 

  16. Zhong H, Yue ZG (2012) Analysis of thin plates by the weak form quadrature element method. Sci. China Phys Mech 55:861–871

    Google Scholar 

  17. Civalek Ö (2010) Use of eight-node curvilinear domains in discrete singular convolution method for free vibration analysis of annular sector plates with simply supported radial edges. J Vib Control 16:303–320

    MathSciNet  MATH  Google Scholar 

  18. Akgöz B, Civalek Ö (2016) Static and dynamic response of sector-shaped graphene sheets. Mech Adv Mater Struct 23:432–442

    Google Scholar 

  19. Wang D, Xuan J (2010) An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Comput Methods Appl Mech Eng 199:2425–2436

    MathSciNet  MATH  Google Scholar 

  20. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5):229–263

    MathSciNet  MATH  Google Scholar 

  21. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199(5):301–313

    MathSciNet  MATH  Google Scholar 

  22. Costantini P, Manni C, Pelosi F, Sampoli LM (2010) Quasi-interpolation in isogeometric analysis based on generalized B-splines. Comput Aided Geomet Des 27(8):656–668

    MathSciNet  MATH  Google Scholar 

  23. de Falco C, Reali A, Vázquez R (2011) GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv Eng Softw 42(12):1020–1034

    MATH  Google Scholar 

  24. Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394

    Google Scholar 

  25. Schmidt R, Wüchner R, Bletzinger K-U (2012) Isogeometric analysis of trimmed NURBS geometries. Comput Methods Appl Mech Eng 241–244:93–111

    MathSciNet  MATH  Google Scholar 

  26. Ghasemzadeh H, Shojaee S, Ghorashi SS, Valizadeh N, Mohammadi S (2012) Analysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach. Comput Methods Civ Eng 3(2):47–66

    Google Scholar 

  27. Tran LV, Ferreira AJM, Nguyen-Xuan H (2013) Isogeometric analysis of functionally graded plates using higher order shear deformation theory. Compos Part B 51:368–383

    Google Scholar 

  28. Lu J, Yang G, Ge J (2013) Blending NURBS and Lagrangian representations in isogeometric analysis. Comput Methods Appl Mech Eng 257:117–125

    MathSciNet  MATH  Google Scholar 

  29. Valizadeh N, Natrajan S, Gonzalez-Estrada OA, Rabczuk T, Bui TQ, Bordas SPA (2013) NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos Struct 99:309–326

    Google Scholar 

  30. Nguyen-Xuan H, Tran LV, Thai CH, Kulasegaram S, Bordas SPA (2014) Isogeometric analysis of functionally graded plates using a refined plate theory. Compos B 64:222–234

    Google Scholar 

  31. Yin S, Hale JS, Yu T, Bui TQ, Bordas SPA (2014) Isogeometric analysis of functionally graded plates using a refined plate theory. Compos Struct 118:121–138

    Google Scholar 

  32. Jüttler B, Langer U, Mantzaflaris A, Moore SE (2014) Geometry + simulation modules: implementing isogeometric analysis. Proc Appl Math Mech 14(1):961–962

    Google Scholar 

  33. Nguyen KD, Nguyen-Xuan H (2015) An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures. Compos Struct 132:423–439

    Google Scholar 

  34. Tran LV, Ly HA, Lee J, Wahab MA, Nguyen-Xuan H (2015) Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach. Int J Mech Sci 96–97:65–78

    Google Scholar 

  35. Vázquez R (2016) A new design for the implementation of isogeometric analysis in octave and Matlab: GeoPDEs 3.0. Comput Math Appl 72(3):1059–1127

    MathSciNet  MATH  Google Scholar 

  36. Massarwi F, Elber G (2016) A B-spline based framework for volumetric object modeling. Comput Aided Des 78:36–47

    MathSciNet  Google Scholar 

  37. Liu C, Liu B, Zhao L, **ng Y, Ma C, Li H (2016) A differential quadrature hierarchical finite element method and its applications to vibration and bending of Mindlin plates with curvilinear domains. Int J Numer Methods Eng 109:174–197

    MathSciNet  Google Scholar 

  38. Liu B, **ng Y, Wang Z, Lu X, Sun H (2017) Non-uniform rational Lagrange functions and its applications to isogeometric analysis of in-plane and flexural vibration of thin plates. Comput Methods Appl Mech Eng 321:173–208

    MathSciNet  MATH  Google Scholar 

  39. Civalek Ö (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos B 111:45–59

    Google Scholar 

  40. Marussig B, Hughes TJR (2018) A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects. Arch Comput Methods Eng 25:523–554

    MathSciNet  Google Scholar 

  41. Guan X, Tang J, Shi D, Shuai C, Wang Q (2018) A semi-analytical method for transverse vibration of sector-like thin plate with simply supported radial edges. Appl Math Model 60:48–63

    MathSciNet  MATH  Google Scholar 

  42. Antolin P, Buffa A, Martinelli M (2019) Isogeometric analysis on V-reps: first results. Comput Methods Appl Mech Eng 355:976–1002

    MathSciNet  MATH  Google Scholar 

  43. Liu T, Hu G, Wang A, Wang Q (2019) A unified formulation for free in-plane vibration of arbitrary-shaped straight-sided quadrilateral and triangular thin plates. Appl Acoust 155:407–422

    Google Scholar 

  44. Alihemmati J, Beni YT (2020) Develo** three-dimensional mesh-free Galerkin method for structural analysis of general polygonal geometries. Eng Comput 36:1059–1068

    Google Scholar 

  45. Sahoo PR, Barik M (2020) Free vibration analysis of stiffened plates. J Vib Eng Technol 8(6):869–882. https://doi.org/10.1007/s42417-020-00196-4

    Article  Google Scholar 

  46. Sahoo PR, Barik M (2020) A numerical investigation on the dynamic response of stiffened plated structures under moving loads. Structures 28:1675–1686. https://doi.org/10.1016/j.istruc.2020.09.056

    Article  Google Scholar 

  47. Sahoo PR, Barik M (2021) Free vibration analysis of curved stiffened plates. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00284-z

    Article  Google Scholar 

  48. Khalafi V, Fazilati J (2022) Panel flutter analysis of cracked functionally graded plates in yawed supersonic flow with thermal effects. Appl Math Model 101:259–275. https://doi.org/10.1016/j.apm.2021.07.043

    Article  MathSciNet  MATH  Google Scholar 

  49. Khalafi V, Fazilati J (2018) Parametric instability behavior of tow steered laminated quadrilateral plates using isogeometric analysis. Thin-Walled Struct 133:96–105

    Google Scholar 

  50. Khalafi V, Fazilati J (2021) Panel flutter analysis of perforated plate repaired by vscl bonded patch using the multi-patch iga approach. Thin-Walled Struct 169: 108465. https://doi.org/10.1016/j.tws.2021.108465. https://www.sciencedirect.com/science/article/pii/S026382312100598X

  51. Dynamic analysis of the composite laminated repaired perforated plates by using multi-patch iga method. Chin J Aeronaut 34(1), 266–280 (2021). https://doi.org/10.1016/j.cja.2020.09.038

  52. Khalafi V, Fazilati J (2018) Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using nurbs-based isogeometric approach. J Fluids Struct 82:198–214. https://doi.org/10.1016/j.jfluidstructs.2018.07.002

    Article  Google Scholar 

  53. Khalafi V, Fazilati J (2019) Effects of embedded perforation geometry on the free vibration of tow-steered variable stiffness composite laminated panels. Thin-Walled Struct 144: 106287. https://doi.org/10.1016/j.tws.2019.106287. https://www.sciencedirect.com/science/article/pii/S0263823119301120

  54. Liu T, Hu G, Wang A, Wang Q (2019) A unified formulation for free in-plane vibrations of arbitrarily-shaped straight-sided quadrilateral and triangular thin plates. Appl Acoust 155:407–422

    Google Scholar 

  55. Khalafi V, Fazilati J (2021) Dynamic analysis of the composite laminated repaired perforated plates by using multi-patch iga method. Chin J Aeronaut 34(1):266–280

    Google Scholar 

  56. Do V, Lee C (2019) Free vibration analysis of fgm plates with complex cutouts by using quasi-3d isogeometric approach. Int J Mech Sci 159:213–233

    Google Scholar 

  57. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  58. Shojaee S, Izadpanah E, Valizadeh N, Kiendl J (2012) Free vibration analysis of thin plates by using a NURBS-based Isogeometric approach. Finite Elem Anal Des 61:23–34

    MathSciNet  Google Scholar 

  59. Shojaee S, Valizadeh N, Izadpanah E, Bui T, Vu TV (2012) Free vibration and buckling analysis of laminated composite plates using the NURBS-based Isogeometric finite element method. Compos Struct 94:1677–1693

    Google Scholar 

  60. Shojaee S, Izadpenah E, Haeri A (2012) Imposition of essential boundary conditions in isogeometric analysis using the Lagrange multiplier method. Int J Optim Civ Eng 2:247–271

    Google Scholar 

  61. Wang D, Liu W, Zhang H (2015) Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices. Comput Methods Appl Mech Eng 286:230–267

    MathSciNet  MATH  Google Scholar 

  62. Chen T, Mo R, Gong ZW (2012) In: Frontiers of manufacturing and design science II, Applied Mechanics and Materials, vol. 121 (Trans Tech Publications, 2012), pp. 2779–2783. https://doi.org/10.4028/www.scientific.net/AMM.121-126.2779

  63. Chang F, Wang W, Liu Y, Qu Y (2015) In: International Conference on computer science and applications (CSA) (2015), pp 213–217. https://doi.org/10.1109/CSA.2015.53

  64. Wang D, Xuan J (2010) An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Comput Methods Appl Mech Eng 199(37):2425–2436

    MathSciNet  MATH  Google Scholar 

  65. Adini A, Clough RW (1961) Analysis of plate bending by the finite element method. Report to National Science Foundation, U.S.A., G.7337

  66. Mishra BP. Barik M (2016) In: Insights and innovations in structural engineering, mechanics and computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation, (ed. Zingoni, A. ), 5–7 September 2016, Cape Town, South Africa. (Taylor & Francis Group, 2016), pp 516–521

  67. Mishra BP, Barik M (2021) Free flexural vibration of thin stiffened plates using nurbs-augmented finite element method. Structures 33:1620–1632

    Google Scholar 

  68. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

    MathSciNet  MATH  Google Scholar 

  69. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in Isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183

    MATH  Google Scholar 

  70. Corr RB, Jennings E (1976) A simultaneous iteration algorithm for solution of symmetric eigenvalue problem. Int J Numer Methods Eng 10:647–663

    MATH  Google Scholar 

  71. Zienkiewicz OC, Taylor RL (1989) The finite element method, 4th edn. McGraw-Hill Book Co., London

    Google Scholar 

  72. Leissa AW (1973) The free vibration of rectangular plates. J Sound Vib 31(3):257–293

    MATH  Google Scholar 

  73. Malik M, Bert CW (1998) Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. Int J Solids Struct 35(3):299–318

    MATH  Google Scholar 

  74. Lim CW, Lü CF, **ang Y, Yao W (2009) On new symplectic elasticity approach for exact free vibration solutions of rectangular kirchhoff plates. Int J Eng Sci 47(1):131–140

    MathSciNet  MATH  Google Scholar 

  75. Ramu I, Mohanty SC (2012) Study on free vibration analysis of rectangular plate structures using finite element method. Proc Eng 38: 2758–2766. https://doi.org/10.1016/j.proeng.2012.06.323. https://www.sciencedirect.com/science/article/pii/S1877705812022369. International Conference on modelling optimization and computing

  76. Bui QT, Nguyen NM (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394

    Google Scholar 

  77. Hinton E (1988) Numerical Methods and Software for Dynamic Analysisof Plates and Shells. Pineridge Press, Swansea

    Google Scholar 

  78. Bui QT, Guyen NM (2011) A moving Kriging interpolation-based mesh-free method for free vibration analysis of Kirchoff plates. Comput Struct 89:380–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biraja Prasad Mishra.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.P., Barik, M. Free Flexural Vibration Analysis of Thin Plates Using NURBS-Augmented Finite-Element Method. J. Vib. Eng. Technol. 11, 1241–1270 (2023). https://doi.org/10.1007/s42417-022-00639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00639-0

Keywords

Navigation