Log in

Continuous Swept-Sine Vibration Realization Combining Adaptive Sliding Mode Control and Inverse Model Compensation for Electro-hydraulic Shake Table

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Electro-hydraulic shake table, also known as vibration simulator, is a kind of important rig for reliability tests. However, the realization of continuous swept-sine vibration signal with electro-hydraulic shake table is still imperfect due to nonlinearities, uncertainties of the electro-hydraulic servo system, time-varying dynamics and unexpected disturbance.

Purpose

An online controller combining inverse model compensation and ultra-local model principle-based adaptive sliding mode control is proposed to improve the swept-sine vibration realization accuracy of the electro-hydraulic shake table in this paper.

Methods

The swept-sine vibration controller is established based on the classical three variable controller as the inner servo controller. Then H1 system identification method-based inverse model compensator is designed. To further enhance the performance of the swept-sine vibration controller, the ultra-local model principle-based adaptive sliding controller is adopted.

Results

Comparative experiments are performed following theoretical analysis of the proposed controller on an electro-hydraulic shake table with linear and logarithmic swept-sine vibration realization.

Conclusion

The experimental results validate the feasibility of the proposed swept-sine vibration realization control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Laborde S, Calvi A (2012) Spacecraft base-sine vibration test data uncertainties investigation based on stochastic scatter approach. Mech Syst Signal Process 32:69–78

    Article  Google Scholar 

  2. Cooper SB, Tiels K, Titurus B, Di Maio D (2020) Polynomial nonlinear state space identification of an aero-engine structure. Comput Struct 238:106299

    Article  Google Scholar 

  3. Bosworth R, Burton D, Williams R (2018) In: Combining test and analysis to troubleshoot steering system vibration problems in an automobile. Routledge, pp 224–237

  4. Murphy HP, Petersen SM, Coats TW, Riley MR (2017) Standardized laboratory test requirements for hardening equipment to withstand wave impact shock in small high speed craft. NAVSEA Carderock Virginia Beach United States

  5. Palmieri M, Cianetti F, Zucca G, Morettini G, Braccesi C (2021) Spectral analysis of sine-sweep vibration: a fatigue damage estimation method. Mech Syst Signal Process 157:107698

    Article  Google Scholar 

  6. Chandra NH, Sekhar A (2014) Swept sine testing of rotor-bearing system for dam** estimation. J Sound Vib 333(2):604–620

    Article  Google Scholar 

  7. Musella U, Waimer S, Peeters B, Marulo F, Guillaume P (2019) Development of a steepest-descent control solution for multi-input multi-output swept sine testing in a virtual shaker environment. J Phys Conf Ser 1264:012002

    Article  Google Scholar 

  8. Zhang B, Chen H, He X (2015) New control method for MIMO swept-sine test. J Vib Shock 34(8):198–202

    Google Scholar 

  9. Wei W, Liu X, Kong J, Huang W, Han J (2018) Flow nonlinear compensation control for electro-hydraulic servo shaking table. J South China Univ Technol (Nat Sci) 46(9):24–29 ((72))

    Google Scholar 

  10. Righettini P, Strada R, Valilou S, KhademOlama E (2018) Nonlinear model of a servo-hydraulic shaking table with dynamic model of effective bulk modulus. Mech Syst Signal Process 110:248–259

    Article  Google Scholar 

  11. Liu J, Qiao B, Zhang X, Yan R, Chen X (2019) Adaptive vibration control on electrohydraulic shaking table system with an expanded frequency range: theory analysis and experimental study. Mech Syst Signal Process 132:122–137

    Article  Google Scholar 

  12. Shen G, Li G, Zang W, Li X, Tang Y (2019) Modal space feedforward control for electro-hydraulic parallel mechanism. IEEE Access 7:39751–39761

    Article  Google Scholar 

  13. Plummer A (2016) Model-based motion control for multi-axis servohydraulic shaking tables. Control Eng Pract 53:109–122

    Article  Google Scholar 

  14. Yao J, Di D, Jiang G, Gao S, Yan H (2013) Identification of acceleration harmonic for an electro-hydraulic servo shaking table based on Kalman filter. Trans Inst Meas Control 35(8):986–996

    Article  Google Scholar 

  15. Nowak RF, Kusner DA, Larson RL, Thoen BK (2000) Utilizing modern digital signal processing for improvement of large scale shaking table performance 2035:1–8

  16. Tagawa Y, Kajiwara K (2007) Controller development for the E-Defense shaking table. Proc Inst Mech Eng Part I J Syst Control Eng 221(2):171–181

    Google Scholar 

  17. Yang Z (2009) Research on control technologies of simulation of vibration environment using hydraulic vibration table

  18. Gang S et al (2013) Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table. Control Eng Pract 21(8):1128–1142

    Article  Google Scholar 

  19. Yao J (2018) Model-based nonlinear control of hydraulic servo systems: challenges, developments and perspectives. Front Mech Eng 13(2):179–210

    Article  Google Scholar 

  20. Chen C, Ricles JM (2009) Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme. Earthq Eng Struct Dyn 38(10):1237–1255

    Article  Google Scholar 

  21. Lee KH et al (2019) Feedforward model-inverse position control of three-stage servo-valve using zero magnitude error tracking control. Proc Inst Mech Eng Part C J Mech Eng Sci 233(7):2340–2348

    Article  Google Scholar 

  22. Shen G et al (2018) Acceleration waveform replication on six-degree-of-freedom redundant electro-hydraulic shaking tables using an inverse model controller with a modelling error. Trans Inst Meas Control 40(3):968–986

    Article  Google Scholar 

  23. Tang Y, Zhu Z-C, Shen G, Li X (2016) Improved feedforward inverse control with adaptive refinement for acceleration tracking of electro-hydraulic shake table. J Vib Control 22(19):3945–3964

    Article  Google Scholar 

  24. Ya J et al (2019) Resonance suppression for hydraulic servo shaking table based on adaptive notch filter. Shock Vib 2019

  25. Li G, Shen G, Zhu Z-C, Li X, Zang W-S (2018) Sine phase compensation combining an amplitude phase controller and a discrete feed-forward compensator for electro-hydraulic shaking tables. Trans Inst Meas Control 40(11):3377–3389

    Article  Google Scholar 

  26. Baek SG, Ji S, Koo JC (2018) Experimental study of electro-hydraulic actuator with payload for precision motion control. Microsyst Technol 24(3):1347–1357

    Article  Google Scholar 

  27. Cornelis B, Toso A, Verpoest W, Peeters B (2013) Adaptive modelling for improved control in durability test rigs 507–516

  28. Rana K (2011) Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing. Expert Syst Appl 38(9):11335–11346

    Article  Google Scholar 

  29. Della Flora L, Gründling H (2008) Time domain sinusoidal acceleration controller for an electrodynamic shaker. IET Control Theory Appl 2(12):1044–1053

    Article  Google Scholar 

  30. Zhang B, Wang D, Zhou K, Wang Y (2008) Linear phase lead compensation repetitive control of a CVCF PWM inverter. IEEE Trans Ind Electron 55(4):1595–1602

    Article  Google Scholar 

  31. Cao Y, Zhao Q, Ye Y, **ong Y (2019) ADRC-based current control for grid-tied inverters: design, analysis, and verification. IEEE Trans Ind Electron 67(10):8428–8437

    Article  Google Scholar 

  32. Yin L, Zhang L, Cong D, Han J (2013) Sine swept vibration control based on offline iteration technique (IEEE), vol 1, pp 456–461

  33. Zhipeng Y, Lutao Y (2014) System identification and online equalization technique based swept sine vibration testing control (IEEE, Hangzhou, China), pp 372–375. https://ieeexplore.ieee.org/document/6911522

  34. **g C, Xu H, Song X, Lu B (2018) Adaptive extended state observer-based flatness nonlinear output control for torque tracking of electrohydraulic loading system. Trans Inst Meas Control 40(10):2999–3009

    Article  Google Scholar 

  35. Yao Z et al (2020) Model reference adaptive tracking control for hydraulic servo systems with nonlinear neural-networks. ISA Trans 100:396–404

    Article  Google Scholar 

  36. Borges FAP, Perondi EA, Cunha MAB, Sobczyk MR (2021) A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator. J Braz Soc Mech Sci Eng 43(5):1–19

    Article  Google Scholar 

  37. Cai Y et al (2021) Sliding-mode control of ship-mounted Stewart platforms for wave compensation using velocity feedforward. Ocean Eng 236:109477

    Article  Google Scholar 

  38. Guan C, Pan S (2008) Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng Pract 16(11):1275–1284

    Article  Google Scholar 

  39. Strano S, Terzo M (2014) A multi-purpose seismic test rig control via a sliding mode approach. Struct Control Health Monit 21(8):1193–1207

    Article  Google Scholar 

  40. Soleymani M, Khalatabari-S A, Ghanbari-S B (2019) Fuzzy-sliding-mode supervisory control of a seismic shake table with variable payload for robust and precise acceleration tracking. J Earthq Eng 23(4):539–556

    Article  Google Scholar 

  41. Rajabi N, Abolmasoumi AH, Soleymani M (2018) Sliding mode trajectory tracking control of a ball-screw-driven shake table based on online state estimations using EKF/UKF. Struct Control Health Monit 25(4):e2133

    Article  Google Scholar 

  42. Fliess M, Join C (2013) Model-free control. Int J Control 86(12):2228–2252

    Article  MathSciNet  MATH  Google Scholar 

  43. Precup R-E, Radac M-B, Roman R-C, Petriu EM (2017) Model-free sliding mode control of nonlinear systems: algorithms and experiments. Inf Sci 381:176–192

    Article  Google Scholar 

  44. Han S, Wang H, Tian Y (2018) Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton. Adv Eng Softw 119:38–47

    Article  Google Scholar 

  45. Wang Z, Wang J (2020) Ultra-local model predictive control: a model-free approach and its application on automated vehicle trajectory tracking. Control Eng Pract 101:104482

    Article  Google Scholar 

  46. Plummer AR (2008) A detailed dynamic model of a six-axis shaking table. J Earthq Eng 12(4):631–662

    Article  Google Scholar 

  47. Manring ND, Fales RC (2019) Hydraulic control systems. Wiley, New York

    Google Scholar 

  48. Yang C, Huang Q, Jiang H, Peter OO, Han J (2010) PD control with gravity compensation for hydraulic 6-DOF parallel manipulator. Mech Mach theory 45(4):666–677

    Article  MATH  Google Scholar 

  49. Gloth G, Sinapius M (2004) Analysis of swept-sine runs during modal identification. Mech Syst Signal Process 18(6):1421–1441

    Article  Google Scholar 

  50. Qiao L, Zhang W (2019) Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans Ind Inform 16(2):1248–1258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Cong, D., Yang, Z. et al. Continuous Swept-Sine Vibration Realization Combining Adaptive Sliding Mode Control and Inverse Model Compensation for Electro-hydraulic Shake Table. J. Vib. Eng. Technol. 10, 1007–1019 (2022). https://doi.org/10.1007/s42417-021-00425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00425-4

Keywords

Navigation