Log in

Microporous Inorganic Membranes for Gas Separation and Purification

  • Research and Development
  • Porous Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

The importance of inorganic membranes for gas separation and purification is analyzed. Although the cost of inorganic membranes is higher than that for polymeric membranes, they have higher permeance, selectivity and better resistance to higher pressure and temperature. The main materials used for porous inorganic membranes are alumina (Al2O3), silica (SiO2), zirconia (ZrO2), zeolite and carbon. Ceramics are compounds of metallic and non-metallic elements. They generally have a macroporous support, an intermediate layer and a small porous top layer. Because the Knudsen gas separation regime has a very low selectivity, various membrane surface modification techniques have started to be experimented with at a number of laboratories. The research focuses on materials that exhibit molecular sieving properties, such as silica, zeolites, MOFs (metal-organic frameworks), graphene and carbon. Finally, gas transport mechanisms through porous membranes are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

MOFs:

metal organic framework

SEM:

scanning electron microscope

CVD:

chemical vapor deposition

CVI:

chemical vapor infiltration

a AB :

separation factor of a component A over component B

Pvisc:

viscous permeance (mol m−2 s−1 Pa−1)

ε:

porosity

μ:

viscosity [Pa s]

η:

shape factor

r:

pore radius [m]

p av :

mean pressure [Pa]

L:

thickness of the membrane (m)

PKn:

Knudsen permeance [mol m−2 s−1 Pa−1]

v:

molecular velocity [m s−1]

M:

molecular weight of the diffusing gas (kg mol−1)

R:

the gas constant (8.31445 J mol−1 K−1)

T:

temperature [K]

F:

permeation molar flux [mol s−1]

P e :

permeability coefficient, [mol m−1 s−1 Pa−1]

A:

permeation area [m2]

P 1 :

upstream gas partial pressure [Pa]

P 2 :

downstream gas partial pressure [Pa]

GTR:

gas transmission rate

λ:

mean free path

K n :

Knudsen number

K b :

the Boltzmann constant

p:

pressure [Pa]

d g :

gas molecule diameter [m]

References

  1. Baker, R.W.: Future directions of membrane gas separation technology. Ind. & Eng. Chem. Res. 41 (2000) 1393–1411

    Article  CAS  Google Scholar 

  2. Chen, X.Y.: Membrane gas separation technologies for biogas upgrading. RSC Advances 5 (2015) [31] 24399–24448, DOI: 10:1039/c5ra00666j

    Article  CAS  Google Scholar 

  3. **elley, C.N.: Membranes for gas separation, PhD thesis, University of Bath, November (2015)

    Google Scholar 

  4. Mulder, M.: Basic principles of membrane technology. Kluwer Academic Publishers, Netherlands, (1996)

    Book  Google Scholar 

  5. Abedini, R. et al.: Application of membrane in gas separation processes: Its suitability and mechanisms. Petroleum & Coal 52 (2010) 69–80

    CAS  Google Scholar 

  6. Keizer, K., Verweij, H.: Progress in inorganic membranes. Chemtech (1996) 37

    Google Scholar 

  7. Lin, Y.S.: Inorganic membranes for gas separation and purification. Membrane 3 (2006) 170–173

    Google Scholar 

  8. Zhang, W.: Experimental investigation on gas separation using porous membranes. Master Thesis, Technische Universität Berlin (2011)

    Google Scholar 

  9. Bhattacharyya, R.: Inorganic membranes for hydrogen isotope-helium separation in fusion energy research. Chem. Technol. 9 (2014) [6] 234–241, ISSN: 0974 - 7443

    CAS  Google Scholar 

  10. Cardoso, S.P. et al.: Inorganic membranes for hydrogen separation. Separation & Purification Rev. DOI: 10.1080/15422119.2017.1383917

  11. Gitis, V., Rothenberg, G.: Ceramic membranes: New opportunities and practical applications. 1th edition, Wiley-VCH (2016), ISBN: 978-3-527-33493-3

    Book  Google Scholar 

  12. Amin, S.K. et al.: An overview of production and development of ceramic membranes. Inter. J. Appl. Eng. Res. 11 (2016) [12] 7708–7721, ISSN 0973-4562

    Google Scholar 

  13. Meinema, H.A. et al.,: Ceramic membranes for gas separation — recent developments and state of the art. Interceram 54 (2005) [2] 86–91

    CAS  Google Scholar 

  14. Lundin, S.T., Way, J.D. et al.: Dense inorganic membranes for hydrogen separation. In: Membranes for Gas Separation. Editor: M.A. Carreon (2017) World Scientific, Singapore, ISBN: 978-981-3207-70-7

    Google Scholar 

  15. Ebrahimi, M., Ehlen, F. et al.: Innovative ceramic hollow fiber membranes for recycling/reuse of oilfield produced water. Desalination and Water Treatment (2014), DOI: 10.1080/19443994.2014.947780

    Google Scholar 

  16. Li, K.: Ceramic membranes for separation and reaction. Wiley (2007), ISBN: 978-0-470-01440-0

    Book  Google Scholar 

  17. Soleimany, A. et al.: Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review. Chem. Eng. & Proc.: Process Intensification 122 (2017) 296–318, DOI: 10.1016/j.cep.2017.06.001

    Article  CAS  Google Scholar 

  18. Sunarso, J. et al.: Membranes for helium recovery: An overview of the context, materials and future directions. Separation & Purification Technol. 176 (2017) 335–383, DOI: 10.1016/j.seppur.2016.12.020

    Article  CAS  Google Scholar 

  19. Isobe, T. et al.: Preparation and gas permeability of the surface-modified porous Al2O3 ceramic filter for CO2 gas separation, J. Asian Ceram. Soc. 1 (2013) 65–70

    Article  Google Scholar 

  20. Koutsonikolas, D.E. et al.: Pore size reduction and performance upgrade of silica membranes with an ambient temperature C-ALD post treatment method. DOI: 10:1080/01496395.2011.560919

  21. Barboiu, C. et al.: Development of new microporous silica membranes for gas separation. Proc. WHEC 16, 13–16 June (2006) Lyon, France

    Google Scholar 

  22. Ahn, S.J. et al.: Permeation properties of silica-zirconia composite membranes supported on porous alumina substrates. J. Membrane Sci. 526 (2017) 409–416, DOI: 10.1016/j.memsci.2016.12.023

    Article  CAS  Google Scholar 

  23. Khatib, S.J.: Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Separation & Purification Technol. 111 (2013) 20–42

    Article  CAS  Google Scholar 

  24. Aoki, K. et al.: Separation of gases with an A-type zeolite membrane. Ind. & Eng. Chem. Res. 39 (2000) 2245–2251

    Article  CAS  Google Scholar 

  25. Korelskiy, D. et al.: Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3 (2015) 12500–12506

    Article  CAS  Google Scholar 

  26. Kosinov, N.: Recent developments in zeolite membranes for gas separation. J. Membrane Sci. 499 (2016) 65–79

    Article  CAS  Google Scholar 

  27. de Vos, R.M. et al.: Improved performance of silica membranes for gas separation. J. Membrane Sci. 143 (1998) 37–51

    Article  Google Scholar 

  28. Koutsonikolas, D.E. et al.: Characterization of commercial and hybrid membranes using gas permeation and permporometry test. J. Membrane Sci. Res. 1 (2015) 130–134

    Google Scholar 

  29. Wall, Y. et al.: Gas transport through ceramic membranes under super-critical conditions. Desalination 250 (2010) 1056–1059

    Article  CAS  Google Scholar 

  30. Oyama, S.T. et al.: Review on mechanisms of gas permeation through inorganic membranes. J. Japan Petroleum Inst. 54 (2011) [5] 298–309

    Article  CAS  Google Scholar 

  31. Hamm, J.B.S. et al.: Recent advances in the development of supported carbon membranes for gas separation. Int. J. Hydrogen Energy 42 (2017) 24830–24845

    Article  CAS  Google Scholar 

  32. Sanyal, O. et al.: Next generation membranes — using tailored carbon-.127 (2018) 688–698

    CAS  Google Scholar 

  33. Hägg, M.B., Lie., J.A., Lindbråthen, A.: Carbon molecular sieve membranes: A promising alternative for selected industrial applications. Ann. N.Y. Acad. Sci. 984 (2003) 329–345

    Article  Google Scholar 

  34. Zhao, Z. et al.: Gas separation properties of metal organic framework (MOF-5) membranes. Ind. Eng. Chem. Res. 52 (2013) 1102–1108, DOI.org/10.1021/ie202777q

    Article  CAS  Google Scholar 

  35. Xu, Q.: Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorganic Chem. Front. 2 (2015) 417–424, DOI: 10.1039/c4qi00230j

    Article  CAS  Google Scholar 

  36. Yoo, B.M. et al.: Graphene and graphene oxide membranes for gas separation applications, Current Opinion in Chemical Engineering 16 (2017) 39–47

    Article  Google Scholar 

  37. Kast, W. et al.: Mass transfer within the gas-phase of porous media. Int. J. Heat & Mass Transfer 43 (2000) 807–823

    Article  CAS  Google Scholar 

  38. Lu, G.Q.: Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid and Interface Sci. 314 (2007) 589–603

    Article  CAS  Google Scholar 

  39. Turel, T.: Gas transmission trough microporous membranes. Dissertation, submitted to the Graduate Faculty of Auburn University, Alabama (USA), (2008)

    Google Scholar 

  40. van den Berg, G.B.: Diffusional phenomena in membrane separation processes. J. Membrane Sci. 73 (1992) 103–118

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank all their colleagues for their help and support. In particular, D. De Meis expresses his sincere gratitude to Prof. Ted Oyama for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico De Meis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Meis, D., Richetta, M. & Serra, E. Microporous Inorganic Membranes for Gas Separation and Purification. Interceram. - Int. Ceram. Rev. 67, 16–21 (2018). https://doi.org/10.1007/s42411-018-0023-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-018-0023-2

Keywords

Navigation