Log in

Enhancing Performance of Dual-Gate FinFET with High-K Gate Dielectric Materials in 5 nm Technology: A Simulation Study

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The rapid advancement in nanoscale devices demands innovative gate dielectric materials to replace traditional Silicon dioxide. This paper investigates the electrical behavior and performance of a dual-gate FinFET employing different high-K gate dielectric materials (Silicon dioxide, Hafnium oxide, Titanium oxide) through ATLAS 2D simulation in 5 nm technology. We analyze how these high-K gate dielectric materials influence the device, focusing on performance enhancement. The study highlights various key performance parameters (\(I_{ON}\), \(I_{OFF}\), \(g_{m}\), \(g_{ds}\), \(R_{ON}\), TF, EV, \(V_{IL}\), \(V_{IH}\), \(NM_{L}\), \(NM_{H}\)) and reveals a significant performance improvement with \(\textrm{HfO}_2\) dielectric material in the proposed Dual-Gate FinFET. Achieving impressive performance parameters (\(I_{ON}\): 21.59 mA, \(I_{OFF}\): 21 \(\mu\)A, Maximum net Electric field: 1221290 V/cm, \(g_{m(max)}\): 0.05187 S, \(g_{ds(max)}\): 0.03462 S, \(R_{ON(max)}\): 25.93 k\(\Omega\), TFmax: 5.02, \(Gain_{max}\): 90.233, \(EV_{max}\): 67.532 V, \(V_{IL}\): 0.21 V, \(V_{IH}\): 0.4 V, \(NM_{L}\): 198 V, \(NM_{H}\): 600 V), this paper provides valuable insights for designing high-performance devices with \(\textrm{HfO}_2\) dielectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Artola, M. Gaillardin, G. Hubert, M. Raine, P. Paillet, Modeling single event transients in advanced devices and ICs. IEEE Trans. Nucl. Sci. 62(4), 1528–1539 (2015)

    Article  CAS  Google Scholar 

  2. T. Dutta, S. Kumar, P. Rastogi, A. Agarwal, Y.S. Chauhan, Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III–V MOSFETs. IEEE J. Electron Devices Soc. 4(2), 66–71 (2016)

    Article  CAS  Google Scholar 

  3. A.S. Roy, S.P. Mudanai, D. Basu, M.A. Stettler, Compact model for ultrathin low electron effective mass double gate MOSFET. IEEE Trans. Electron Devices 61(2), 308–313 (2014)

    Article  Google Scholar 

  4. Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M.S. Lundstrom, NanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914–1925 (2003)

    Article  CAS  Google Scholar 

  5. C. Yadav, J.P. Duarte, S. Khandelwal, A. Agarwal, C. Hu, Y.S. Chauhan, Capacitance modeling in III–V FinFETs. IEEE Trans. Electron Devices 62(11), 3892–3897 (2015)

    Article  Google Scholar 

  6. M.D. Ganeriwala, C. Yadav, N.R. Mohapatra, S. Khandelwal, C. Hu, Y.S. Chauhan, Modeling of charge and quantum capacitance in low effective mass III–V FinFETs. IEEE J. Electron Devices Soc. 4(6), 396–401 (2016)

    Article  Google Scholar 

  7. J.-J. Kim, K. Roy, Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans. Electron Devices 51(9), 1468–1474 (2004)

    Article  Google Scholar 

  8. S. **ong, J. Bokor, Sensitivity of double-gate and FinFETDevices to process variations. IEEE Trans. Electron Devices 50(11), 2255–2261 (2003)

    Article  Google Scholar 

  9. A. Asenov, F. Adamu-Lema, X. Wang, S.M. Amoroso, Problems with the continuous do** TCAD simulations of decananometer CMOS transistors. IEEE Trans. Electron Devices 61(8), 2745–2751 (2014)

    Article  Google Scholar 

  10. Q. Chen, E.M. Harrell, J.D. Meindl, A physical shortchannel threshold voltage model for undoped symmetric doublegate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)

    Article  CAS  Google Scholar 

  11. R. Rao, N. Dasgupta, A. Dasgupta, Study of random dopant fluctuation effects in FD-SOI MOSFET using analytical threshold voltage model. IEEE Trans. Device Mater. Rel. 10(2), 247–253 (2010)

    Article  Google Scholar 

  12. J.-P. Colinge, Multiple-gate SOl MOSFETs. Solid-State Electron. 48(6), 897–905 (2004)

    Article  CAS  Google Scholar 

  13. D. Tekleab, H.H. Tran, J.W. Sleight, and D. Chidambarrao “Silicon nanotube MOSFET,” U.S. Patent 20 120 217 468 A1 (2012)

  14. N. Mohankumar, B. Syamal, C.K. Sarkar, Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans. Electron Devices 57(4), 820–826 (2010)

    Article  CAS  Google Scholar 

  15. A. Sarkar, A.K. Das, S. De, C.K. Sarkar, Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron. J. 43(11), 873–882 (2012)

    Article  Google Scholar 

  16. A. Mallik, A. Chattopadhyay, Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)

    Article  Google Scholar 

  17. J. Widiez et al., Experimental evaluation of gate architecture influence on DG SOI MOSFETs performance. IEEE Trans. Electron Devices 52(8), 1772–1779 (2005)

    Article  Google Scholar 

  18. S. Chakraborty, A. Mallik, C.K. Sarkar, Subthreshold performance of dual-material gate CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans. Electron Devices 55(3), 827–832 (2008)

    Article  CAS  Google Scholar 

  19. E.J. Pakaree, V.M. Srivastava, Realization with fabrication of double-gate MOSFET based differential amplifier. Microelectron. J. 91, 70–83 (2019)

    Article  CAS  Google Scholar 

  20. M.V. Fischetti et al., Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length. IEEE Trans. Electron Devices 54(9), 2116–2136 (2007)

    Article  CAS  Google Scholar 

  21. S. Rashid, F. Bashir, F.A. Khanday, M.R. Beigh, F.A. Hussin, 2-D design of double gate Schottky tunnel MOSFET for high-performance use in analog/RF applications. IEEE Access 9, 80158–80169 (2021)

    Article  Google Scholar 

  22. J. Yang, S. Jahdi, B. Stark, O. Alatise, J. Ortiz-Gonzalez, P. Mellor, Analysis of the 1st and 3rd quadrant transients of symmetrical and asymmetrical double-trench SiC power MOSFETs. IEEE Open J. Power Electron. 2, 265–276 (2021)

    Article  Google Scholar 

  23. G.C. Patil, S. Qureshi, A novel \(\delta\)-doped partially insulated dopantsegregated Schottky barrier SOI MOSFET for analog/RF applications. Semicond. Sci. Technol. 26(8), 085002 (2011)

    Article  Google Scholar 

  24. F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, S.A. Abbasi, A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans. Electron Devices 62(10), 3357–3364 (2015)

    Article  CAS  Google Scholar 

  25. F. Bashir, A.G. Alharbi, S.A. Loan, Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE J. Electron Devices Soc. 6, 19–25 (2018)

    Article  CAS  Google Scholar 

  26. M. Fritze, C.L. Chen, S. Calawa, D. Yost, B. Wheeler, P. Wyatt, J. Larson, High-speed Schottky-barrier pMOSFET with fT / = 280 GHz. IEEE Electron Device Lett. 25(4), 220–222 (2004)

    Article  Google Scholar 

  27. Y.K. Chin, K.-L. Pey, N. Singh, G.-Q. Lo, K.H. Tan, C.-Y. Ong, L.H. Tan, Dopant-segregated Schottky silicon-nanowire MOSFETs with gate-all-around channels. IEEE Electron Device Lett. 30(8), 843–845 (2009)

    Article  CAS  Google Scholar 

  28. S. Rashid, F. Bashir, F.A. Khanday, M.R. Beigh, F.A. Hussin, 2-D design of double gate Schottky tunnel MOSFET for high-performance use in analog/RF applications. IEEE Access 9, 80158–80169 (2021)

    Article  Google Scholar 

  29. S.K. Dargar, V.M. Srivastava, Design of double-gate tri-active layer channel based IGZO thin-film transistor for improved performance of ultra-low-power RFID rectifier. IEEE Access 8, 194652–194662 (2020)

    Article  Google Scholar 

  30. S.S. Zaman, P. Kumar, M.P. Sarma, A. Ray and G. Trivedi, Design and simulation of SF-FinFET and SD-FinFET and their performance in analog, RF and digital applications. in 2017 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), pp. 200–205 (2017)

  31. K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45(2), 144–151 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ganeswara Rao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.V.G., Ramanjaneyulu, N., Pydi, B. et al. Enhancing Performance of Dual-Gate FinFET with High-K Gate Dielectric Materials in 5 nm Technology: A Simulation Study. Trans. Electr. Electron. Mater. 24, 557–569 (2023). https://doi.org/10.1007/s42341-023-00473-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00473-5

Keywords

Navigation