Log in

Coriandrum Sativum-Derived Catalysts for Eco-Friendly Knoevenagel Condensation: Experimental Investigation and Central Composite Design

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the heterogeneous catalyst effect of tree products derived from the powder of Coriandrum Sativum seeds GCD, GCF and GCA on Knoevenagel condensation reaction of various substituted benzaldehydes with an active methylene compound malononitrile, as a new ecofriendly, reusable and natural catalyst. The effect of several reaction parameters on the corresponding catalytic behavior was studied. All results have shown that GCA had given the highest catalyst rate and could be regenerated without significant loss of catalyst activity. The GCA catalyst can be reused up to five times without any degradation in activity. Finally, the central composite design (CCD) was studied for modelling the catalysis process through a comparative study between the number of preformed experiments and “one variable at a time” approach. A second order polynomial equation was successfully used for describing this process. The equation was reduced due to the presence of statistical insignificant term polynomial equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Din IU, Selvaraj M, Ramalingam RJ (2021) A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation. Dalton Trans Vol 50:4445–4469

    Article  CAS  Google Scholar 

  2. Prerna Ganwir I, Kale G, Chaturbhuj (2022) Wet copper-slag: a new and eco-friendly catalyst for Knoevenagel condensation, Sustainable Chemistry and Pharmacy, 25, 100614

  3. March J (1968) in Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, McGraw-Hill, (New York, NY: 1968

  4. Leadbeater NE (2014) Organic synthesis using microwave heating. Compr Org Synthesis (Second Edition) 9:pp234–286

    Article  Google Scholar 

  5. Gambacorta G, Sharley JS, Baxendale IR (2021) A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 17:1181–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thanetchaiyakup A, Ngernmeesri P (2022) Synthesis of Anticancer Melotenine A and Indolo [1, 2-a] quinolines, and Pepper Aroma Rotundone Doctoral dissertation, Kasetsart University

  7. Darshana Bora RT, Shankaraiah N (2022) Contribution of Knoevenagel Condensation products toward the development of Anticancer agents: an updated review. ChemMedChem, European chemical societies publishing, 17, pp. e202100736

  8. Bustos JO, Cruz P, Pérez Y, Hierro Idel (2022) Prolinate-based heterogeneous catalyst for Knoevenagel condensation reaction: insights into mechanism reaction using solid-state electrochemical studies. Mol Catal 524:112328

    Article  Google Scholar 

  9. Hui Y, **a J, Li J, Wang Y, Zhang Y (2022) Ionic liquid-functional MCM-41 as a high effective catalyst for the synthesis of isatylidene malononitrile via Knoevenagel condensation. J Saudi Chem Soc 26:101399

    Article  CAS  Google Scholar 

  10. Zhao SQ, GU JZ, Synthesis (2022) Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Two Diphenyl ether Tetracarboxylic Acid-Co (II) coordination polymers. Chin J Inorg Chem 38:161–170

    CAS  Google Scholar 

  11. Anahmadi H, Fathi M, El hajri F, Benzekri Z, Sibous S, Chafik El B, Idrissi MS, El youbi A, Souizi S (2022) Boukhris Synthesis, characterization and application of α-Ca3 (PO4)2 as a heterogeneous catalyst for the synthesis of 2.3-diphenylquinoxaline derivatives and knoevenagel condensation under green conditions. J Mol Struct 1248:131449

    Article  CAS  Google Scholar 

  12. Yamauchi H, Nakabayashi M, Kawada M, Hino Y, Inayama S, Tanikubo H, Hayashi S (2022) Synthesis of acrylonitrile side chain-appended π-conjugated polymers by a Suzuki cross-coupling polycondensation and a Knoevenagel condensation, and their optical properties. Mater Adv 3:3835–3841

    Article  CAS  Google Scholar 

  13. Zhu F, Tan X, Li P, Lv F, Zhao P (2022) One-pot synthesis of nitrogen-doped highly ordered mesoporous polymer nanospheres as a highly efficient catalyst for the water-medium knoevenagel reactions. Res Chem Intermed 48:505–518

    Article  CAS  Google Scholar 

  14. Lv H, Zhang Z, Fan L, Gao Y, Zhang X (2022) A nanocaged cadmium-organic framework with high catalytic activity on the chemical fixation of CO2 and deacetalization-knoevenagel condensation. Microporous Mesoporous Mater 335:111791

    Article  CAS  Google Scholar 

  15. Ganwir P, Kale I, Chaturbhuj G (2022) Wet copper-slag: a new and eco-friendly catalyst for Knoevenagel condensation. Sustainable Chem Pharm 25:100614

    Article  CAS  Google Scholar 

  16. El Amri A, Kadiri L, Hsissou R, Lebkiri A, Wardighi Z, Rifi E (2023) Lebkiri Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches. J Mol Struct 1272:134098

    Article  Google Scholar 

  17. Sadek O, Abdellaoui M, Millanvois A, Ollivier C, Fensterbank L (2022) Organometallic catalysis under visible light activation: benefits and preliminary rationales. Photochem Photobiol Sci 21:585–606

    Article  CAS  PubMed  Google Scholar 

  18. Das A, Anbu N, Mostakim SK, Dhakshinamoorthy A, Biswaset S (2019) A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Trans 48:17371–17380

    Article  CAS  PubMed  Google Scholar 

  19. Dhakshinamoorthy A, Heidenreich N, Lenzen D, Stock N (2017) Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures, CrystEngComm, 19, p. 4187–4193

  20. Rasheed T (2022) Magnetic nanomaterials: greener and sustainable alternatives for the adsorption of hazardous environmental contaminants. J Clean Prod 362:132338

    Article  CAS  Google Scholar 

  21. Munyentwali A, Li H, Yanga Q, General (2022) 633, 118525

  22. Gogoi C, Nagarjun N, Rana A, Abhijeet A, Dhakshinamoorthy S, Biswas (2022) Diamino group-functionalized Zr-based metal–organic framework for fluorescence sensing of free chlorine in the aqueous phase and knoevenagel condensation. Dalton Trans 51:6964–6975

    Article  CAS  PubMed  Google Scholar 

  23. Ouaddari H, Beqqour D, Bennazha J, El Amrani IE, Albizane A, Solhy A, Varma RS (2018) Natural Moroccan clays: comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustainable Chem Pharm 10:1–8

    Article  Google Scholar 

  24. Zeynizadeh B, Rahmani S, Ilkhanizadeh S (2019) Strongly Proton exchanged montmorillonite K10 (H+-Mont) as a solid acid catalyst for highly efficient and environmental benign synthesis of biscoumarins via tandem knoevenagel–Michael reaction. Polyhedron 168:48–56

    Article  CAS  Google Scholar 

  25. Benzekri Z, El Mejdoubi K, Boukhris S, Sallek B, Lakhrissi B, Souizi A (2016) Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation. Synth Commun 46:442–451

    Article  CAS  Google Scholar 

  26. Benzekri Z, El Aadad H, Sibous S, Serrar H, Boukhris S, Chahine A, Souizi A (2020) Improvement of the catalytic performance of hybrid nanocomposite based on phosphate-benzimidazole in Knoevenagel condensation. Heliyon 6:e05293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aadad HE, Benzekri Z, Boukhris S, Chahine A (2020) Synthesis, characterization of polystyrene-phosphate films and their application as heterogeneous catalyst for Knoevenagel condensation in solvent-free conditions. J Chem Sci 132:1–13

    Article  Google Scholar 

  28. Anbu N, Maheswari R, Elamathi V, Varalakshmi P, Dhakshinamoorthy A (2020) Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation between benzaldehydes and cyanoacetamide. Catal Commun 138:105954

    Article  CAS  Google Scholar 

  29. Anbu N, Hariharan S, Dhakshinamoorthy A (2020) Knoevenagel-Doebner condensation promoted by Chitosan as a reusable solid base catalyst. Mol Catal, 484,110744

  30. Sakthivel B, Dhakshinamoorthy A (2017) Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction. J Colloid Interface Sci 485:75–80

    Article  CAS  PubMed  Google Scholar 

  31. Sarimeseli A (2011) Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves, Energy Convers. Manag., vol. 52, no. 2, pp. 1449–1453, Feb

  32. Msaada K et al (2013) Dec., Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties, Arab. J. Chem

  33. Wangensteen H, Samuelsen AB, Malterud KE (2004) Antioxidant activity in extracts from coriander, Food Chem., vol. 88, no. 2, pp. 293–297, Nov

  34. Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74(1):101–109

    Article  CAS  PubMed  Google Scholar 

  35. Mandal S, Mandal M (2015) Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity, Asian Pac. J. Trop. Biomed., vol. 5, no. 6, pp. 421–428, Jun

  36. Chithra V, Leelamma S (1999) Coriandrum sativum—mechanism of hypoglycemic action. Food Chem 67(3):229–231

    Article  CAS  Google Scholar 

  37. Kadiri L, Galai M, Ouakki M, Essaadaoui Y, Ouass A, Cherkaoui M, Rifi EH, Lebkiri A (2018) Coriandrum Sativum.L seeds Extract as a Novel Green Corrosion Inhibitor for Mild Steel in 1.0 M hydrochloric and 0.5 M sulfuric solutions. Anal Bioanal Electrochem 10:249–268

    CAS  Google Scholar 

  38. Kadiri L, Essaadaoui Y, Rifi EH, Lebkiri A (2016) Characterization of microstructure of coriander seeds (coriandrum sativum). Presented Dielectric Mater Applications: ISyDMA’2016 Rabat 1:294–297

    Article  CAS  Google Scholar 

  39. Kadiri L, Lebkiri A, Rifi EH, Essaadaoui Y, Ouass A, Rifi EH, Lebkiri A (2017) Characterization of coriander seeds coriandrum sativum. Int J Sci Eng Res, 8, 7

  40. Mve MZ, Makani T, Eba F (2016) Removal of Mn (II) from aqueous solutions by activated carbons prepared from Coula Edulis Nut Shell. J Environ Sci Technol 9:226–237

    Article  CAS  Google Scholar 

  41. Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    Article  CAS  PubMed  Google Scholar 

  42. El Mejdoubi K, Sallek B, Cherkaoui H, Chaair H, Oudadesse H (2018) One-pot synthesis of dihydropyrimidinones/thiones catalyzed by white marble a metamorphic rock: an efficient and reusable catalyst for the biginelli reaction. Kinet Catal 59:290–295

    Article  Google Scholar 

  43. El Mejdoubi K, Sallek B, Digua K, Chaair H, Oudadesse H (2019) Natural phosphate K09 as a new reusable catalyst for the synthesis of dihydropyrano [2, 3-c] pyrazole derivatives at room temperature. Kinet Catal 60:536–542

    Article  Google Scholar 

  44. Malenga EN, Mulaba-Bafubiandi AF, Nheta W (2022) Application of the response surface method (RSM) based on central composite design (CCD) and design space (DS) to optimize the flotation and the desliming conditions in the recovery of PGMs from mine sludge. Sep Sci Technol 57:1–24

    Article  Google Scholar 

  45. Khouni I, Louhichi G, Ghrabi A (2020) Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: influence of dye mass loading rate and biomass concentration. Process Saf Environ Prot 135:364–382

    Article  CAS  Google Scholar 

  46. Orooji, Y., Han, N., Nezafat, Z., Shafiei, N., Shen, Z., Nasrollahzadeh, M.,… Klemeš,J. J. (2022). Valorisation of nuts biowaste: Prospects in sustainable bio (nano) catalysts and environmental applications. Journal of Cleaner Production, 131220

  47. Kadiri L, Ouass A, Hsissou R, Safi Z, Wazzan N, Essaadaoui Y, Lebkiri I, Khattabi OE, Rifi EH (2021) Lebkiri Adsorption properties of coriander seeds: spectroscopic kinetic thermodynamic and computational approaches. J Mol Liq 343:116971

    Article  CAS  Google Scholar 

  48. Ouass A, Kadiri L, Essaadaoui Y, Belakhmima RA, Cherkaoui M, Lebkiri A, Rifi EH (2018) Removal of trivalent chromium ions from aqueous solutions by Sodium polyacrylate beads. Mediterranean J Chem 7:125–134

    Article  CAS  Google Scholar 

  49. Ouass A, Kadiri L, Hsissou R, El Amri A, Lebkiri I, Abbou B, Lebkiri A, Rifi EH (2024) Efficient removal of chromium (III) ions from aqueous solutions using sodium polyacrylate hydrogel powder: characterization, kinetics, and regeneration studies. Inorg Chem Commun, 112601

  50. Hsissou R, Benhiba F, El Aboubi M, Abbout S, Benzekri Z, Safi Z, Rafik M, Bahaj H, Kaba M, Galai M, Wazzan N, Briche S (2022) Synthesis and performance of two ecofriendly epoxy resins as a highly efficient corrosion inhibition for carbon steel in 1 M HCl solution: DFT, RDF, FFV and MD approaches. Chem Phys Lett 806:139995

    Article  CAS  Google Scholar 

  51. El-Aouni N, Hsissou R, El Azzaoui J, El Bouchti M (2020) Elharfi Synthesis rheological and thermal studies of epoxy polymer and its composite. Chem Data Collections 30:100584

    Article  CAS  Google Scholar 

  52. Das A, Anbu N, Dhakshinamoorthy A, Biswas S (2019) A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous Mesoporous Mater 284:459–467

    Article  CAS  Google Scholar 

  53. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Mater Chem Phys 2:1–8

    Google Scholar 

  54. Tarbaoui M, Oumam M, El Amraoui B, Fourmentin S, Benzina M, Charrouf M, Bennamara A, Abourriche A (2014) Elaboration, characterization and evaluation of the performance of a new adsorbent material based of marine sponges: application in adsorption of volatile organic compounds. J Mater Environ Sci Vol 5:2163–2168

    Google Scholar 

  55. Das A, Anbu N, Gogoi C, Dhakshinamoorthy A, Biswas S (2021) Amino Group Functionalized Hf-Based Metal-Organic Framework for Knoevenagel-Doebner condensation. Eur J Inorg Chem 2021:3396–3403

    Article  CAS  Google Scholar 

  56. Montgomery DC, Mastrangelo CM (1991) Some statistical process control methods for autocorrelated data. J Qual Technol 23:179–193

    Article  Google Scholar 

  57. Ghasemi E, Heydari A, Sillanpää M (2019) Central composite design for optimization of removal of trace amounts of toxic heavy metal ions from aqueous solution using magnetic Fe3O4 functionalized by guanidine acetic acid as an efficient nano-adsorbent. Microchem J 147:133–141

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Hsissou.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouass, A., Kadiri, L., Hsissou, R. et al. Coriandrum Sativum-Derived Catalysts for Eco-Friendly Knoevenagel Condensation: Experimental Investigation and Central Composite Design. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-01009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-01009-x

Keywords

Navigation