Log in

Enhancing Low-Temperature HCHO Oxidation: Investigation selectivity and Catalytic Activity of Ag, Co, Mo, and Cr Catalysts Supported on γ-Al2O3

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Formaldehyde (HCHO) stands out as a notorious indoor air pollutant, known for its potential to pose serious health risks through prolonged exposure. This study addresses the imperative need to efficiently eliminate HCHO from indoor environments, employing a catalytic oxidation approach at ambient temperature. The research adopts a simple yet effective two-step synthesis process, incorporating sol–gel and impregnation techniques to fabricate diverse catalysts denoted as 5%M/γ-Al2O3, with M representing Ag, Co, Mo, and Cr. The materials were characterized using a variety of techniques such as XRD, BET, FT-IR, TEM, ICP-OES and H2-TPR. The catalytic activity in the oxidation processes of formaldehyde were studied using an advanced analytical device equipped with an infrared analyzer (MKS multigas 2030), enabling precise differentiation of the various products. The Al2O3 support exhibited distinct diffraction peaks corresponding to the cubic structure of the γ-alumina phase, showcasing high surface area and porosity. The introduction of impregnated metals played a pivotal role in influencing both the physicochemical and catalytic properties of the catalysts, thereby impacting the selectivity. The Ag/γ-Al2O3 catalyst demonstrated good performance, achieving 100% conversion of HCHO at 125 °C, with the exclusive production of CO2 and water as by-products. Furthermore, the Co/γ-Al2O3 catalyst exhibited complete formaldehyde oxidation, with enhanced CO2 selectivity at around 250 °C. TEM analysis provided valuable insights into the particle dispersion and size, revealing a dependency on the type of metal utilized. The FTIR analysis identified the Al–O–Al vibration, characterizing it at the vibrational frequencies of 670 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No additional data available.

References

  1. Liu G, Zhou J, Zhao W, Ao Z, An T (2020) Single atom catalytic oxidation mechanism of formaldehyde on Al doped graphene at room temperature. Chin Chem Lett 31(7):1966–1969. https://doi.org/10.1016/j.cclet.2019.12.023

    Article  CAS  Google Scholar 

  2. Li R, Huang Y, Zhu D, Ho W, Cao J, Lee S (2021) Improved Oxygen Activation over a Carbon/Co 3 O 4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. Environ Sci Technol 55(6):4054–4063. https://doi.org/10.1021/acs.est.1c00490

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Li Y, Zhang C, Chen X, Liu C, Weng W, Shan W, He H (2021) A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: The roles of surface defects. Appl Catal B 282:119540. https://doi.org/10.1016/j.apcatb.2020.119540

    Article  CAS  Google Scholar 

  4. Zhu D, Huang Y, Cao J, Lee SC, Chen M, Shen Z (2019) Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: Oxygen activation and efficient catalytic removal of formaldehyde at room temperature. Appl Catal B 258:117981. https://doi.org/10.1016/j.apcatb.2019.117981

    Article  CAS  Google Scholar 

  5. Fan J, Niu X, Teng W, Zhang P, Zhang W, Zhao D (2020) Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J Mater Chem A 8(33):17174–17184. https://doi.org/10.1039/D0TA05473A

    Article  CAS  Google Scholar 

  6. Han Z, Wang C, Zou X, Chen T, Dong S, Zhao Y, **e J, Liu H (2020) Diatomite-supported birnessite–type MnO2 catalytic oxidation of formaldehyde: Preparation, performance and mechanism. Appl Surf Sci 502:144201. https://doi.org/10.1016/j.apsusc.2019.144201

    Article  CAS  Google Scholar 

  7. Zhang C, He H (2007) A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal Today 126(3–4):345–350. https://doi.org/10.1016/j.cattod.2007.06.010

    Article  CAS  Google Scholar 

  8. Huang H, Xu Y, Feng Q, Leung DYC (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5(5):2649–2669. https://doi.org/10.1039/C4CY01733A

    Article  CAS  Google Scholar 

  9. Wang L, Yue H, Hua Z, Wang H, Li X, Li L (2017) Highly active Pt/Na TiO2 catalyst for low temperature formaldehyde decomposition. Appl Catal B 219:301–313. https://doi.org/10.1016/j.apcatb.2017.07.073

    Article  CAS  Google Scholar 

  10. Huang H, Ye X, Huang H, Zhang L, Leung DYC (2013) Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor. Chem Eng J 230:73–79. https://doi.org/10.1016/j.cej.2013.06.035

    Article  CAS  Google Scholar 

  11. Yu F, Qu Z, Zhang X, Fu Q, Wang Y (2013) Investigation of CO and formaldehyde oxidation over mesoporous Ag/Co3O4 catalysts. J Energy Chem 22(6):845–852. https://doi.org/10.1016/S2095-4956(14)60263-1

    Article  CAS  Google Scholar 

  12. Xu Q, Lei W, Li X, Qi X, Yu J, Liu G, Wang J, Zhang P (2014) Efficient Removal of Formaldehyde by Nanosized Gold on Well-Defined CeO 2 Nanorods at Room Temperature. Environ Sci Technol 48(16):9702–9708. https://doi.org/10.1021/es5019477

    Article  CAS  PubMed  Google Scholar 

  13. Chen B, Zhu X, Crocker M, Wang Y, Shi C (2013) Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst. Catal Commun 42:93–97. https://doi.org/10.1016/j.catcom.2013.08.008

    Article  CAS  Google Scholar 

  14. Jiang G, Su Y, Li H, Chen Y, Li S, Bu Y, Zhang Z (2021) Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde. Appl Surf Sci 549:149277. https://doi.org/10.1016/j.apsusc.2021.149277

    Article  CAS  Google Scholar 

  15. Zhang C, He H, Tanaka K (2006) Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl Catal B 65(1–2):37–43. https://doi.org/10.1016/j.apcatb.2005.12.010

    Article  CAS  Google Scholar 

  16. Zhu X, Cheng B, Yu J, Ho W (2016) Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Appl Surf Sci 364:808–814. https://doi.org/10.1016/j.apsusc.2015.12.115

    Article  CAS  Google Scholar 

  17. Huang H, Leung DYC (2011) Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J Catal 280(1):60–67. https://doi.org/10.1016/j.jcat.2011.03.003

    Article  CAS  Google Scholar 

  18. Qin C, Guo M, Jiang C, Yu R, Huang J, Yan D, Li S, Dang X (2021) Simultaneous oxidation of toluene and ethyl acetate by dielectric barrier discharge combined with Fe, Mn and Mo catalysts. Sci Total Environ 782:146931. https://doi.org/10.1016/j.scitotenv.2021.146931

    Article  CAS  Google Scholar 

  19. Zhu B, Li X-S, Sun P, Liu J-L, Ma X-Y, Zhu X, Zhu A-M (2017) A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chin J Catal 38(10):1759–1769. https://doi.org/10.1016/S1872-2067(17)62890-0

    Article  CAS  Google Scholar 

  20. Vakros J (2020) The Influence of Preparation Method on the Physicochemical Characteristics and Catalytic Activity of Co/TiO2 Catalysts. Catalysts 10(1):88. https://doi.org/10.3390/catal10010088

    Article  CAS  Google Scholar 

  21. Jiao Y, Chen X, He F, Liu S (2019) Simple preparation of uniformly distributed mesoporous Cr/TiO2 microspheres for low-temperature catalytic combustion of chlorobenzene. Chem Eng J 372:107–117. https://doi.org/10.1016/j.cej.2019.04.118

    Article  CAS  Google Scholar 

  22. Gavril D, Georgaka A, Karaiskakis G (2012) Kinetic Study of Oxygen Adsorption over Nanosized Au/γ-Al2O3 Supported Catalysts under Selective CO Oxidation Conditions. Molecules 17(5):4878–4895. https://doi.org/10.3390/molecules17054878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng Z, Peng X, Li C, Yu J, Feng Z (2017) Gaseous cyclohexanone catalytic oxidation by a self-assembled Pt/γ-Al2O3 catalyst: process optimization, mechanistic study, and kinetic analysis. RSC Adv 7(74):46958–46968. https://doi.org/10.1039/C7RA08494C

    Article  CAS  Google Scholar 

  24. Chen X, Chen M, He G, Wang F, Xu G, Li Y, Zhang C, He H (2018) Specific Role of Potassium in Promoting Ag/Al2O3 for Catalytic Oxidation of Formaldehyde at Low Temperature. J Phys Chem C 122(48):27331–27339. https://doi.org/10.1021/acs.jpcc.8b07160

    Article  CAS  Google Scholar 

  25. Butovsky E, Perelshtein I, Gedanken A (2012) Air stable core–shell multilayer metallic nanoparticles synthesized by RAPET: fabrication, characterization and suggested applications. J Mater Chem 22(30):15025. https://doi.org/10.1039/c2jm32528d

    Article  CAS  Google Scholar 

  26. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc Chem Res 46(8):1740–1748. https://doi.org/10.1021/ar300361m

    Article  CAS  PubMed  Google Scholar 

  27. Gholizadeh F, Izadbakhsh A, Huang J, Zi-Feng Y (2021) Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane. Microporous Mesoporous Mater 310:110616. https://doi.org/10.1016/j.micromeso.2020.110616

    Article  CAS  Google Scholar 

  28. Wang Y, Yang J, Gu R, Peng L, Guo X, Xue N, Zhu Y, Ding W (2018) Crystal-Facet Effect of γ-Al2O3 on Supporting CrOx for Catalytic Semihydrogenation of Acetylene. ACS Catal 8(7):6419–6425. https://doi.org/10.1021/acscatal.8b01619

    Article  CAS  Google Scholar 

  29. Samain L, Jaworski A, Edén M, Ladd DM, Seo D-K, Javier Garcia-Garcia F, Häussermann U (2014) Structural analysis of highly porous γ-Al2O3. J Solid State Chem 217:1–8. https://doi.org/10.1016/j.jssc.2014.05.004

    Article  CAS  Google Scholar 

  30. Olusola OJ, Sudip M (2016) Temperature programme reduction (TPR) studies of cobalt phases in -alumina supported cobalt catalysts. J Pet Technol Altern Fuels 7(1):1–12. https://doi.org/10.5897/JPTAF2015.0122

    Article  Google Scholar 

  31. Tiernan MJ, Fesenko EA, Barnes PA, Parkes GMB, Ronane M (2001) The application of CRTA and linear heating thermoanalytical techniques to the study of supported cobalt oxide methane combustion catalysts. Thermochim Acta 379(1–2):163–175. https://doi.org/10.1016/S0040-6031(01)00614-1

    Article  CAS  Google Scholar 

  32. Ousji R, Ksibi Z, Ghorbel A, Fontaine C (2022) Ag-Based Catalysts in Different Supports: Activity for Formaldehyde Oxidation. Adv Mater Phys Chem 12(08):163–176. https://doi.org/10.4236/ampc.2022.128012

    Article  CAS  Google Scholar 

  33. Jabłońska M, Nocuń M, Bidzińska E (2016) Silver-Alumina catalysts for low-temperature methanol incineration. Catal Lett 146:937–944. https://doi.org/10.1007/s10562-016-1713-x

    Article  CAS  Google Scholar 

  34. Musi A, Massiani P, Brouri D, Trichard J-M, da Costa P (2009) On the Characterisation of Silver Species for SCR of NO x with Ethanol. Catal Lett 128(1–2):25–30. https://doi.org/10.1007/s10562-008-9694-z

    Article  CAS  Google Scholar 

  35. Jabłońska M, Nocuń M, Bidzińska E (2016) Silver-Alumina Catalysts for Low-Temperature Methanol Incineration. Catal Lett 146(5):937–944. https://doi.org/10.1007/s10562-016-1713-x

    Article  CAS  Google Scholar 

  36. Martins GP, Kangsadan T, Scott G, Wagner C, van Hoose J (2007) A 21st. Century Perspective on Molybdenum Powder Production by Hydrogen Reduction. Mater Sci Forum 561–565:447–452. https://doi.org/10.4028/www.scientific.net/MSF.561-565.447

    Article  Google Scholar 

  37. Xu B, Yang Y, Xu Y, Han B, Wang Y, Liu X, Yan Z (2017) Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous Mesoporous Mater 238:84–89. https://doi.org/10.1016/j.micromeso.2016.02.031

    Article  CAS  Google Scholar 

  38. Ali AS, Mohammed AJ, Saud HR (2018) Hydrothermal Synthesis of TiO2/Al2O3 Nanocomposite and its Application as Improved Sonocatalyst. Int J Eng Technol 7(7):22

    Article  CAS  Google Scholar 

  39. Ousji R, Ksibi Z, Ghorbel A, Fontaine C (2023) The Effect of Metal-Support Interactions on Formaldehyde Oxidation and By-Product Selectivities in TiO2 Supported Metal Catalysts (Co, Cr, Mo, and Ag). Chem Africa. https://doi.org/10.1007/s42250-023-00666-8

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Rached Ousji.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ousji, R., Bouabdellah, M.A., Ksibi, Z. et al. Enhancing Low-Temperature HCHO Oxidation: Investigation selectivity and Catalytic Activity of Ag, Co, Mo, and Cr Catalysts Supported on γ-Al2O3. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00967-6

Keywords

Navigation