Log in

Light-Responsive Organic-Inorganic Hydrogel Functionalized with MoO3 Composites of Poly(Vinyl Alcohol) and Choline Chloride-Based Polymeric Deep Eutectic Solvent

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, a polymeric deep eutectic template of poly(vinyl alcohol) and choline chloride in DMSO was used for the dissolution and preparation of inorganic MoO3 composites. These were further incorporated into poly(acrylic acid) and acrylamide polymerized networks to form an organic-inorganic hydrogel. The characterization of the hydrogel shows that the rectangular-cubic-shaped microstructured inorganic composites were well dispersed on the surface of the hydrogel. More also, the pH-dependent swelling properties of the hydrogel show that the hydrogel increased by 285%, 583%, and 880% in acidic, neutral, and basic solutions respectively. Furthermore, the original transparent hydrogel displayed a distinct light blue coloration after UV-light irradiation for 5 s and eventually turned blue-black after 30 s. This color formation was accompanied by UV-Vis electronic absorption at 294 nm for the original hydrogel and a redshift to 304 and 320 nm after irradiation. The observed transitions could be associated with π→π*/n→π* transitions in the organic molecules or charge transfer transitions in the inorganic molecules. The promising light-responsive property of the hydrogel shows good prospects for optical display devices and photochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nahar Y, Thickett SC (2021) Greener, faster, stronger: the benefits of deep eutectic solvents in polymer and materials science. Polym (Basel) 13:1–24. https://doi.org/10.3390/polym13030447

    Article  CAS  Google Scholar 

  2. Xue J, Wang J, Feng D, Huang H, Wang M (2020) Processing of functional composite resins using deep eutectic solvent. Crystals 10:1–19. https://doi.org/10.3390/cryst10100864

    Article  CAS  Google Scholar 

  3. Qi Y, Weng Z, Song C, Hu Y, Liu X, Wang J, Zhang S, Liu C, Jian X (2021) Deep eutectic solvent for curing of phthalonitrile resin: lower the curing temperature but improve the properties of thermosetting. High Perform Polym 33:538–545. https://doi.org/10.1177/0954008320972151

    Article  CAS  Google Scholar 

  4. Mota-Morales JD, Sánchez-Leija RJ, Carranza A, Pojman JA, del Monte F, Luna-Bárcenas G (2018) Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog Polym Sci 78:139–153. https://doi.org/10.1016/j.progpolymsci.2017.09.005

    Article  CAS  Google Scholar 

  5. Abdolhosseini M, Shemirani F, Yousefi SM (2020) Poly (deep eutectic solvents) as a new class of sustainable sorbents for solid phase extraction: application for preconcentration of pb (II) from food and water samples. Microchim Acta 187. https://doi.org/10.1007/s00604-020-04564-5

  6. Joos B, Volders J, Da Cruz RR, Baeten E, Safari M, Van Bael MK, Hardy AT (2020) Polymeric backbone eutectogels as a New Generation of Hybrid Solid-State Electrolytes. Chem Mater 32:3783–3793. https://doi.org/10.1021/acs.chemmater.9b05090

    Article  CAS  Google Scholar 

  7. Cao ZQ, Wang GJ (2016) Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem Rec 1398–1435. https://doi.org/10.1002/tcr.201500281

  8. Vales TP, Badon IWT, Kim HJ (2018) Multi-responsive Hydrogels Functionalized with a photochromic spiropyran-conjugated Chitosan Network. Macromol Res 26:950–953. https://doi.org/10.1007/s13233-018-6126-9

    Article  CAS  Google Scholar 

  9. Bratek-Skicki A (2021) Towards a new class of stimuli-responsive polymer-based materials– recent advances and challenges. Appl Surf Sci Adv 4:100068. https://doi.org/10.1016/j.apsadv.2021.100068

    Article  Google Scholar 

  10. Lee HP, Gaharwar AK (2020) Light-responsive Inorganic Biomaterials for Biomedical Applications. Adv Sci 7:2000863. https://doi.org/10.1002/advs.202000863

    Article  CAS  Google Scholar 

  11. Bai Y, Wilbraham L, Gao H, Clowes R, Yang H, Zwijnenburg MA, Cooper AI, Sprick RS (2021) Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. J Mater Chem A 9:19958–19964. https://doi.org/10.1039/d1ta03098a

    Article  CAS  Google Scholar 

  12. Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR, Samuel APS, Kiebala DJ, Wasielewski MR, Stupp SI (2014) Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat Chem 6:964–970. https://doi.org/10.1038/nchem.2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou H, Zheng S, Liu C, Qu C, Wang Y, **ao W, Li H, Zhao D, Chang J (2019) Preparation and characterization of high-performance polyamic acid salt hydrogel in aqueous solution. High Perform Polym 31:497–502. https://doi.org/10.1177/0954008318818885

    Article  CAS  Google Scholar 

  14. Kang M, Deng Y, Oderinde O, Su F, Ma W, Yao F, Fu G, Zhang Z (2019) Sunlight-driven photochromic hydrogel based on silver bromide with antibacterial property and non-cytotoxicity. Chem Eng J 375:121994. https://doi.org/10.1016/j.cej.2019.121994

    Article  CAS  Google Scholar 

  15. Ejeromedoghene O, Hu YP, Oderinde O, Yao F, Akinremi C, Akinyeye R, Adewuyi S, Fu G (2022) Transparent and photochromic poly(hydroxyethyl acrylate–acrylamide)/WO3 hydrogel with antibacterial properties against bacterial keratitis in contact lens. J Appl Polym Sci 139:1–15. https://doi.org/10.1002/app.51815

    Article  CAS  Google Scholar 

  16. Santos MV, Barud HS, Alencar MAS, Nalin M, Toma SH, Araki K, Benedetti AV, Maciel IO, Fragneaud B, Legnani C, Molina C, Cremona M, Ribeiro SJL (2021) Self-supported Smart Bacterial nanocellulose–phosphotungstic acid nanocomposites for Photochromic Applications. Front Mater 8:1–9. https://doi.org/10.3389/fmats.2021.668835

    Article  Google Scholar 

  17. Liu G, Zhang YM, Xu X, Zhang L, Liu Y (2017) Optically switchable luminescent hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Adv Opt Mater 5:1–7. https://doi.org/10.1002/adom.201700149

    Article  CAS  Google Scholar 

  18. Zheng L, Hua H, Zhang Z, Zhu Y, Wang L, Li Y (2022) PVA/ChCl Deep Eutectic Polymer Blends for Transparent Strain Sensors with antifreeze, flexible, and Recyclable properties. ACS Appl Mater Interfaces 14:49212–49223. https://doi.org/10.1021/acsami.2c15673

    Article  CAS  PubMed  Google Scholar 

  19. Oh KI, Baiz CR (2019) Empirical S = O stretch vibrational frequency map. J Chem Phys 151:0–7. https://doi.org/10.1063/1.5129464

    Article  CAS  Google Scholar 

  20. Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanoparticle Res 12:591–603. https://doi.org/10.1007/s11051-009-9628-8

    Article  CAS  Google Scholar 

  21. Oderinde O, Kang M, Kalulu M, Yao F, Fu G (2019) Facile synthesis and study of the photochromic properties of deep eutectic solvent-templated cuboctahedral-WO3/MoO3 nanocomposites. Superlattices Microstruct 125:103–112. https://doi.org/10.1016/j.spmi.2018.10.023

    Article  CAS  Google Scholar 

  22. Li B, Jiang L, Li X, Ran P, Zuo P, Wang A, Qu L, Zhao Y, Cheng Z, Lu Y (2017) Preparation of monolayer MoS2 Quantum dots using temporally shaped Femtosecond laser ablation of bulk MoS2 targets in Water. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-10632-3

    Article  CAS  Google Scholar 

  23. Darban Z, Shahabuddin S, Gaur R, Ahmad I, Sridewi N (2022) Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 8:263 2022. https://doi.org/10.3390/gels8050263

  24. Mañas-Torres MC, Ramírez-Rodríguez GB, García-Peiro JI, Parra-Torrejón B, Cuerva JM, Lopez-Lopez MT, de Cienfuegos LA, Delgado-López JM (2022) Organic/inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides. Inorg Chem Front 9:743–752. https://doi.org/10.1039/d1qi01249e

    Article  CAS  Google Scholar 

  25. Hussain I, Sayed SM, Liu S, Oderinde O, Kang M, Yao F, Fu G (2018) Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions. Eur Polym J 105:85–94. https://doi.org/10.1016/j.eurpolymj.2018.05.025

    Article  CAS  Google Scholar 

  26. Ejeromedoghene O, Ma X, Oderinde O, Yao F, Adewuyi S, Fu G (2021) Quaternary type IV deep eutectic solvent-based tungsten oxide/niobium oxide photochromic and reverse fading composite complex. New J Chem 45:18008–18018. https://doi.org/10.1039/d1nj02461b

    Article  CAS  Google Scholar 

  27. Xue Y, Wei M, Fu D, Wu Y, Sun B, Yu X, Wu L (2022) A visual discrimination of existing States of Virus Capsid protein by a Giant Molybdate Cluster. Nanomaterials 12:736. https://doi.org/10.3390/nano12050736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inzani K, Nematollahi M, Vullum-Bruer F, Grande T, Reenaas TW, Selbach SM (2017) Electronic properties of reduced molybdenum oxides. Phys Chem Chem Phys 19:9232–9245. https://doi.org/10.1039/c7cp00644f

    Article  CAS  PubMed  Google Scholar 

  29. Ejeromedoghene O, Zuo X, Ogungbesan SO, Oderinde O, Yao F, Adewuyi S, Fu G (2022) Template synthesis and characterization of photochromic tungsten trioxide nanofibers. J Mater Sci Mater Electron 33:7371–7379. https://doi.org/10.1007/s10854-022-07845-2

    Article  CAS  Google Scholar 

  30. Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH (2013) Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv Funct Mater 23:215–226. https://doi.org/10.1002/adfm.201200993

    Article  CAS  Google Scholar 

  31. Huang PR, He Y, Cao C, Lu ZH (2014) Impact of lattice distortion and electron do** on α-MoO3 electronic structure. Sci Rep 4:1–7. https://doi.org/10.1038/srep07131

    Article  CAS  Google Scholar 

  32. Ejeromedoghene O, Oderinde O, Yao F, Adewuyi S, Fu G (2021) Intrinsic structural/morphological and photochromic responses of WO3 co-doped MoO3 nanocomposites based on varied drying methods. Dry Technol 40:2321–2334. https://doi.org/10.1080/07373937.2021.1949602

    Article  CAS  Google Scholar 

  33. Chen M, Shen Y, Xu L, **ang G, Ni Z (2020) Synthesis of a super-absorbent nanocomposite hydrogel based on vinyl hybrid silica nanospheres and its properties. RSC Adv 10:41022–41031. https://doi.org/10.1039/d0ra07074b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jayaramudu T, Ko HU, Kim HC, Kim JW, Kim J (2019) Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: swelling kinetics, temperature, and pH effects. Mater (Basel) 12:2080. https://doi.org/10.3390/ma12132080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onome Ejeromedoghene.

Ethics declarations

Conflict of Interest

The author declares no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejeromedoghene, O., Kpomah, B. Light-Responsive Organic-Inorganic Hydrogel Functionalized with MoO3 Composites of Poly(Vinyl Alcohol) and Choline Chloride-Based Polymeric Deep Eutectic Solvent. Chemistry Africa 7, 2857–2865 (2024). https://doi.org/10.1007/s42250-024-00943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00943-0

Keywords

Navigation