Log in

TiO2 Sensitized by Natural Dye Extracted from Cinnamon Bark for Photodegradation of Methylene Blue in Water Under LED Irradiation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study utilizes natural-dye-sensitized photocatalysts (NDSPs) as cost-effective and ecologically safe materials for photocatalytic degradation of organic contaminants such as methylene blue (MB). A natural dye extracted from cinnamon powder has been established to sensitize TiO2, effectively creating a visible sunlight-driven photocatalyst. The sensitization of TiO2 by cinnamon extract was confirmed by Fourier transform infrared spectroscopy (FTIR). There was no change in the phase and morphology of TiO2 after sensitization. The enhancement of light absorbance in the visible region of TiO2 after being sensitized by cinnamon was confirmed by UV–visible diffused reflectance spectroscopy (DRS). The photocatalytic removal of methylene blue by cinnamon-sensitized TiO2 (TiO2-CI) was optimized by studying the impact of different factors (irradiation time, photocatalyst amount, pH, light power, and starting concentration of MB). Efficient removal of 87% was achieved with 100 ppm of TiO2-CI, a pH of 10.7, and 20 ppm of MB within 20 min of visible irradiation, with an increase of 80% compared to pristine TiO2. The photocatalytic decomposition kinetics of MB were modeled in pseudo-first order. Furthermore, the TiO2-CI catalyst, once recovered, has the potential for regeneration with the addition of a new cinnamon extract, enabling subsequent reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benjamin S, Vaya D, Punjabi PB, Ameta SC (2011) Enhancing photocatalytic activity of zinc oxide by coating with some natural pigments. Arab J Chem 4:205–209

    Article  CAS  Google Scholar 

  2. Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ (2021) A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12:70–87. https://doi.org/10.1080/21655979.2020.1863034

    Article  CAS  PubMed  Google Scholar 

  3. Bi Y, Li J, Dong C, Mu W, Han X (2020) Rational construction of MnCo2O4.5 deposited TiO2 nanotube array heterostructures with enhanced photocatalytic degradation of tetracycline. ChemPhotoChem 4:366–372. https://doi.org/10.1002/cptc.201900283

    Article  CAS  Google Scholar 

  4. Borges GA, Silva LP, Penido JA, de Lemos LR, Mageste AB, Rodrigues GD (2016) A method for dye extraction using an aqueous two-phase system: effect of co-occurrence of contaminants in textile industry wastewater. J Environ Manag 183:196–203. https://doi.org/10.1016/j.jenvman.2016.08.056

    Article  CAS  Google Scholar 

  5. Khataee AR, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40

    Article  CAS  Google Scholar 

  6. Grace Pavithra K, Senthil Kumar P, Jaikumar V, Sundar Rajan P (2019) Removal of colorants from wastewater: a review on sources and treatment strategies. J Ind Eng Chem 75:1–19. https://doi.org/10.1016/j.jiec.2019.02.011

    Article  CAS  Google Scholar 

  7. Khan SA, Shahid S, Nazir M, Kanwal S, Zaman S, Sarwar MN, Haroon SM (2019) Efficient template based synthesis of Ni nanorods by etching porous alumina for their enhanced photocatalytic activities against methyl red and methyl orange dyes. J Mol Struct 1184:316–323. https://doi.org/10.1016/j.molstruc.2019.02.038

    Article  CAS  Google Scholar 

  8. Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378

    Article  CAS  Google Scholar 

  9. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR (2020) Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5:20684–20697. https://doi.org/10.1021/acsomega.0c01905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan SA, Noreen F, Kanwal S, Hussain G (2017) Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Dig J Nanomater Biostruct 12:877–889

    Google Scholar 

  11. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105

    Article  CAS  PubMed  Google Scholar 

  12. Shan R, Lu L, Gu J, Zhang Y, Yuan H, Chen Y, Luo B (2020) Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater Sci Semicond Process 114:105088. https://doi.org/10.1016/j.mssp.2020.105088

    Article  CAS  Google Scholar 

  13. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C 82:46–59

    Article  CAS  Google Scholar 

  14. Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S (2017) Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res 16:743–753. https://doi.org/10.4314/tjpr.v16i4.2

    Article  CAS  Google Scholar 

  15. Jiuhui QU (2008) Research progress of novel adsorption processes in water purification: a review. J Environ Sci 20:1–13

    Article  CAS  Google Scholar 

  16. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Article  CAS  PubMed  Google Scholar 

  17. Tijani JO, Fatoba OO, Madzivire G, Petrik LF (2014) A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollut 225:2102. https://doi.org/10.1007/s11270-014-2102-y

    Article  CAS  Google Scholar 

  18. Hisaindee S, Meetani MA, Rauf MA (2013) Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal Chem 49:31–44

    Article  CAS  Google Scholar 

  19. He Y, Peng G, Jiang Y, Zhao M, Wang X, Chen M, Lin S (2020) Environmental hazard potential of nano-photocatalysts determined by nano-bio interactions and exposure conditions. Small 16:1907690

    Article  CAS  Google Scholar 

  20. Zhang L, Ran J, Qiao S-Z, Jaroniec M (2019) Characterization of semiconductor photocatalysts. Chem Soc Rev 48:5184–5206. https://doi.org/10.1039/C9CS00172G

    Article  CAS  PubMed  Google Scholar 

  21. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14. https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  22. Li H, Shen X, Liu Y, Wang L, Lei J, Zhang J (2015) Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity. J Alloys Compd 646:380–386. https://doi.org/10.1016/j.jallcom.2015.05.145

    Article  CAS  Google Scholar 

  23. Malik AQ, Lokhande PE, Kumar D, Mooney J, Sharma A, Gani Mir TU (2023) Photocatalytic 1 and antimicrobial activity study for cadmium sulphide quantum dots. Mater Res Innov 27:392–400. https://doi.org/10.1080/14328917.2023.2180570

    Article  CAS  Google Scholar 

  24. Praveen AE, Samanta T, Ganguli S, Mahalingam V (2019) Efficient photodegradation of organic pollutants by using a Bi2CuO4/BiPO4 heterojunction photocatalyst. ChemPhotoChem 3:204–210. https://doi.org/10.1002/cptc.201800226

    Article  CAS  Google Scholar 

  25. Armaković SJ, Savanović MM, Armaković S (2022) Titanium dioxide as the most used photocatalyst for water purification: an overview. Catalysts 13:26

    Article  Google Scholar 

  26. Verma N, Ananthakrishnan R (2021) Boosted charge transfer efficacy of an all-solid-state Z-scheme BiOI-CD-CdS photocatalyst for enhanced degradation of 4-nitrophenol and oxidation of benzyl alcohol under visible light**. ChemPhotoChem 5:545–558. https://doi.org/10.1002/cptc.202000280

    Article  CAS  Google Scholar 

  27. Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J Am Chem Soc 131:18457–18466. https://doi.org/10.1021/ja907923r

    Article  CAS  PubMed  Google Scholar 

  28. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8:1654–1659. https://doi.org/10.1021/nl080421v

    Article  CAS  PubMed  Google Scholar 

  29. Fernández JA, Suan A, Ramírez JC, Robles J, Salcedo JC, Pedroza AM, Daza CE (2016) Treatment of real wastewater with TiO2-films sensitized by a natural-dye obtained from Picramnia sellowii. J Environ Chem Eng 4:2848–2856. https://doi.org/10.1016/j.jece.2016.05.037

    Article  CAS  Google Scholar 

  30. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC (2012) Sensitization of TiO2 nanostructures with coumarin 343. Chem Eng J 211–212:285–292. https://doi.org/10.1016/j.cej.2012.09.093

    Article  CAS  Google Scholar 

  31. Santos TD, Morandeira A, Koops S, Mozer AJ, Tsekouras G, Dong Y, Wagner P, Wallace G, Earles JC, Gordon KC et al (2010) Injection limitations in a series of porphyrin dye-sensitized solar cells. J Phys Chem C 114:3276–3279. https://doi.org/10.1021/jp908401k

    Article  CAS  Google Scholar 

  32. Kisch H, Zang L, Lange C, Maier WF, Antonius C, Meissner D (1998) Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light. Angew Chem Int Ed 37:3034–3036. https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21%3c3034::AID-ANIE3034%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  33. Zhang J, Bang JH, Tang C, Kamat PV (2010) Tailored TiO2−SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4:387–395. https://doi.org/10.1021/nn901087c

    Article  CAS  PubMed  Google Scholar 

  34. Huang L, Peng F, Wang H, Yu H, Li Z (2009) Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts. Catal Commun 10:1839–1843. https://doi.org/10.1016/j.catcom.2009.06.011

    Article  CAS  Google Scholar 

  35. Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces 2:2385–2392. https://doi.org/10.1021/am100394x

    Article  CAS  PubMed  Google Scholar 

  36. Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. J Phys Chem C 114:16481–16487. https://doi.org/10.1021/jp1071956

    Article  CAS  Google Scholar 

  37. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2010) Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci 352:68–74. https://doi.org/10.1016/j.jcis.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  38. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034. https://doi.org/10.1021/jp0255482

    Article  CAS  Google Scholar 

  39. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Highly visible light active TiO2−xNx heterojunction photocatalysts. Chem Mater 22:3843–3853. https://doi.org/10.1021/cm903260f

    Article  CAS  Google Scholar 

  40. Subramonian W, Wu TY, Chai S-P (2017) Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: treatment efficiency and characterizations of reused photocatalyst. J Environ Manag 187:298–310. https://doi.org/10.1016/j.jenvman.2016.10.024

    Article  CAS  Google Scholar 

  41. Zaleska A (2008) Doped-TiO2: A Review. Recent Pat Eng 2:157–164

    Article  CAS  Google Scholar 

  42. Meyer GJ (2005) Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces. Inorg Chem 44:6852–6864. https://doi.org/10.1021/ic0505908

    Article  CAS  PubMed  Google Scholar 

  43. Giribabu L, Vijay Kumar Ch, Gopal Reddy V, Yella Reddy P, Srinivasa Rao Ch, Jang S-R, Yum J-H, Nazeeruddin MdK, Grätzel M (2007) Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. Sol Energy Mater Sol Cells 91:1611–1617. https://doi.org/10.1016/j.solmat.2007.05.004

    Article  CAS  Google Scholar 

  44. Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064

    Article  CAS  PubMed  Google Scholar 

  45. Hsiao Y-C, Wu T-F, Wang Y-S, Hu C-C, Huang C (2014) Evaluating the sensitizing effect on the photocatalytic decoloration of dyes using anatase-TiO2. Appl Catal B Environ 148:250–257

    Article  Google Scholar 

  46. **ong L, Tang J (2021) Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater 11:2003216. https://doi.org/10.1002/aenm.202003216

    Article  CAS  Google Scholar 

  47. Vallejo W, Navarro K, Díaz-Uribe C, Schott E, Zarate X, Romero E (2021) Zn(II)-tetracarboxy-phthalocyanine-sensitized TiO2 thin films as antimicrobial agents under visible irradiation: a combined DFT and experimental study. ACS Omega 6:13637–13646. https://doi.org/10.1021/acsomega.1c00658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keşir MK, Sökmen M, Bıyıklıoğlu Z (2021) Photocatalytic efficiency of metallo phthalocyanine sensitized TiO2 (MPc/TiO2) nanocomposites for Cr (VI) and antibiotic amoxicillin. Water 13:2174

    Article  Google Scholar 

  49. Otieno S, Lanterna AE, Mack J, Derese S, Amuhaya EK, Nyokong T, Scaiano JC (2021) Solar driven photocatalytic activity of porphyrin sensitized TiO2: experimental and computational studies. Molecules 26:3131. https://doi.org/10.3390/molecules26113131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sułek A, Pucelik B, Kuncewicz J, Dubin G, Dąbrowski JM (2019) Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal Today 335:538–549

    Article  Google Scholar 

  51. Gholamrezapor E, Eslami A (2019) Sensitization of magnetic TiO2 with copper(II) tetrahydroxylphenyl porphyrin for photodegradation of methylene blue by visible LED light. J Mater Sci Mater Electron 30:4705–4715. https://doi.org/10.1007/s10854-019-00764-9

    Article  CAS  Google Scholar 

  52. Lee CY, She C, Jeong NC, Hupp JT (2010) Porphyrin sensitized solar cells: TiO2 sensitization with a π-extended porphyrin possessing two anchoring groups. Chem Commun 46:6090–6092

    Article  CAS  Google Scholar 

  53. Haghighatzadeh A (2020) Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized TiO2 nanoparticles for phenol degradation. Bull Mater Sci 43:52. https://doi.org/10.1007/s12034-019-2016-9

    Article  CAS  Google Scholar 

  54. Ali A, Hassan SA, BaQais A, Binoj JS (2022) A study on the application of solar cells sensitized with a blackberry-based natural dye for power generation. J Nanomater 2022:e2834206. https://doi.org/10.1155/2022/2834206

    Article  CAS  Google Scholar 

  55. Higashino T, Nimura S, Sugiura K, Kurumisawa Y, Tsuji Y, Imahori H (2017) Photovoltaic properties and long-term durability of porphyrin-sensitized solar cells with silicon-based anchoring groups. ACS Omega 2:6958–6967. https://doi.org/10.1021/acsomega.7b01290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdulrahman ZH, Hachim DM, Al-murshedi ASN, Kamil F, Al-Manea A, Yusaf T (2022) Comparative performances of natural dyes extracted from mentha leaves, Helianthus annuus leaves, and fragaria fruit for dye-sensitized solar cells. Designs 6:100. https://doi.org/10.3390/designs6060100

    Article  Google Scholar 

  57. Kathiravan I, Sankaranarayanan S, Balasundaram J, Subramaniam B (2022) Experimentation of dyes extracted from the peels of red banana and Aloe vera as sensitizers for TiO2-based dye-sensitized solar cells. Environ Sci Pollut Res Int 29:83897–83906. https://doi.org/10.1007/s11356-022-21509-y

    Article  CAS  PubMed  Google Scholar 

  58. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Mukhlus A (2018) Application of dyes extracted from alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 192:487–498. https://doi.org/10.1016/j.saa.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  59. Ismail M, Ludin NA, Hamid NH, Ibrahim MA, Sopian K (2018) The effect of chenodeoxycholic acid (CDCA) in Mangosteen (Garcinia mangostana) pericarps sensitizer for dye-sensitized solar cell (DSSC). J Phys Conf Ser 1083:012018

    Article  Google Scholar 

  60. Goulart S, Jaramillo Nieves LJ, Dal Bó AG, Bernardin AM (2020) Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dyes Pigments 182:108654. https://doi.org/10.1016/j.dyepig.2020.108654

    Article  CAS  Google Scholar 

  61. Krishnan S, Shriwastav A (2021) Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J Environ Chem Eng 9:104699. https://doi.org/10.1016/j.jece.2020.104699

    Article  CAS  Google Scholar 

  62. Ghosh M, Chowdhury P, Ray AK (2020) Photocatalytic activity of aeroxide TiO2 sensitized by natural dye extracted from mangosteen peel. Catalysts 10:917. https://doi.org/10.3390/catal10080917

    Article  CAS  Google Scholar 

  63. Vallejo W, Rueda A, Díaz-Uribe C, Grande C, Quintana P (2019) Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R Soc Open Sci 6:181824. https://doi.org/10.1098/rsos.181824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Diaz-Uribe C, Vallejo W, Romero E, Villareal M, Padilla M, Hazbun N, Muñoz-Acevedo A, Schott E, Zarate X (2020) TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: experimental and DFT study. J Saudi Chem Soc 24:407–416. https://doi.org/10.1016/j.jscs.2020.03.004

    Article  CAS  Google Scholar 

  65. Patterson K, Howlett K, Patterson K, Wang B, Jiang L (2020) Photodegradation of ibuprofen and four other pharmaceutical pollutants on natural pigments sensitized TiO2 nanoparticles. Water Environ Res 92:1152–1161. https://doi.org/10.1002/wer.1310

    Article  CAS  PubMed  Google Scholar 

  66. Subramanian A, Wang H-W (2012) Effect of hydroxyl group attachment on TiO2 films for dye-sensitized solar cells. Appl Surf Sci 258:7833–7838. https://doi.org/10.1016/j.apsusc.2012.04.069

    Article  CAS  Google Scholar 

  67. Völker B, Wölzl F, Bürgi T, Lingenfelser D (2012) Dye bonding to TiO2: in situ attenuated total reflection infrared spectroscopy study, simulations, and correlation with dye-sensitized solar cell characteristics. Langmuir 28:11354–11363. https://doi.org/10.1021/la302197z

    Article  CAS  PubMed  Google Scholar 

  68. Jang I, Song K, Park J-H, Oh S-G (2013) of Dye adsorption on TiO2 surface through hydroxylation process for dye-sensitized solar cells. Bull Korean Chem Soc 34:2883–2888. https://doi.org/10.5012/BKCS.2013.34.10.2883

    Article  CAS  Google Scholar 

  69. Yan Z, Gong W, Chen Y, Duan D, Li J, Wang W, Wang J (2014) Visible-light degradation of dyes and phenols over Mesoporous titania prepared by using anthocyanin from red radish as template. Int J Photoenergy 2014:1–10

    Article  Google Scholar 

  70. Zyoud A, Zaatar N, Saadeddin I, Helal MH, Campet G, Hakim M, Park D, Hilal HS (2011) Alternative natural dyes in water purification: anthocyanin as TiO2-sensitizer in methyl orange photo-degradation. Solid State Sci 13:1268–1275. https://doi.org/10.1016/j.solidstatesciences.2011.03.020

    Article  CAS  Google Scholar 

  71. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Altern Med ECAM 2014:642942. https://doi.org/10.1155/2014/642942

    Article  Google Scholar 

  72. Knauth P, López ZL, Acevedo-Hernandez G, Sevilla MTE (2018) Cinnamon essential oil: chemical composition and biological activities. In: Essential oils production, applications and health benefits, pp 215–244

  73. Buddee S, Wongnawa S, Sriprang P, Sriwong C (2014) Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light. J Nanopart Res 16:2336. https://doi.org/10.1007/s11051-014-2336-z

    Article  CAS  Google Scholar 

  74. Alizadeh Behbahani B, Falah F, Lavi Arab F, Vasiee M, Tabatabaee Yazdi F (2020) Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid Based Complement Altern Med 2020:1–8

    Article  Google Scholar 

  75. Yardımcı B, Kanmaz N (2023) An effective-green strategy of methylene blue adsorption: sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2. J Environ Chem Eng 11:110254

    Article  Google Scholar 

  76. Salehi E, Gavari N, Chehrei A, Amani S, Amani N, Zaghi K (2019) Efficient separation of triglyceride from blood serum using cinnamon as a novel biosorbent: adsorption thermodynamics, kinetics, isothermal and process optimization using response surface methodology. Process Biochem 77:122–136. https://doi.org/10.1016/j.procbio.2018.12.002

    Article  CAS  Google Scholar 

  77. Tanev PT, Vlaev LT (1993) An attempt at a more precise evaluation of the approach to mesopore size distribution calculations depending on the degree of pore blocking. J Colloid Interface Sci 160:110–116

    Article  CAS  Google Scholar 

  78. Saadati M, Akhavan O, Fazli H (2021) Single-layer MoS2-MoO3-x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features. Catalysts 11:1445

    Article  CAS  Google Scholar 

  79. Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18

    Article  CAS  Google Scholar 

  80. Kazemi F, Mohamadnia Z, Kaboudin B, Karimi Z (2016) Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. J Appl Polym Sci 133:43386

    Article  Google Scholar 

  81. Xu C, Rangaiah GP, Zhao XS (2014) Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind Eng Chem Res 53:14641–14649

    Article  CAS  Google Scholar 

  82. Vallejo W, Diaz-Uribe C, Cantillo Á (2015) Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. J Photochem Photobiol Chem 299:80–86. https://doi.org/10.1016/j.jphotochem.2014.11.009

    Article  CAS  Google Scholar 

  83. Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B Environ 119–120:197–206. https://doi.org/10.1016/j.apcatb.2012.02.034

    Article  CAS  Google Scholar 

  84. Rahimi R, Honarvar Fard E, Saadati S, Rabbani M (2012) Degradation of methylene blue via Co–TiO2 nano powders modified by meso-tetra(carboxyphenyl)porphyrin. J Sol-Gel Sci Technol 62:351–357. https://doi.org/10.1007/s10971-012-2733-7

    Article  CAS  Google Scholar 

  85. Li Z, Fang Y, Zhan X, Xu S (2013) Facile preparation of squarylium dye sensitized TiO2 nanoparticles and their enhanced visible-light photocatalytic activity. J Alloys Compd 564:138–142. https://doi.org/10.1016/j.jallcom.2013.03.002

    Article  CAS  Google Scholar 

  86. Min KS, Kumar RS, Lee JH, Kim KS, Lee SG, Son Y-A (2019) Synthesis of new TiO2/porphyrin-based composites and photocatalytic studies on methylene blue degradation. Dyes Pigments 160:37–47. https://doi.org/10.1016/j.dyepig.2018.07.045

    Article  CAS  Google Scholar 

  87. Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532. https://doi.org/10.1021/ie2025213

    Article  CAS  Google Scholar 

  88. Cabir B, Yurderi M, Caner N, Agirtas MS, Zahmakiran M, Kaya M (2017) Methylene blue photocatalytic degradation under visible light irradiation on copper phthalocyanine-sensitized TiO2 nanopowders. Mater Sci Eng B 224:9–17. https://doi.org/10.1016/j.mseb.2017.06.017

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Chawraba or Hussein Medlej.

Ethics declarations

Conflict of interest

Not applicable.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawraba, K., Medlej, H., Toufaily, J. et al. TiO2 Sensitized by Natural Dye Extracted from Cinnamon Bark for Photodegradation of Methylene Blue in Water Under LED Irradiation. Chemistry Africa 7, 2087–2101 (2024). https://doi.org/10.1007/s42250-024-00890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00890-w

Keywords

Navigation