Log in

Synthesis of Potato-Starch Based Bio-nanocomposite for the Removal of Trifluralin Under Visible Light Illumination

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Starch based bio-nanocomposite has been introduced as a potential agent in order to upgrade the water quality. The current work describes the synthesis of bio-nanocomposite of starch and Ce (IV) sulphatoarsenate for the elimination of Trifluralin. For the analysis of synthesized material, various instrumental techniques including as TEM, SEM, FTIR, XRD and EDX were used. The SEM images shows the rough and porous surface of starch-Ce(IV) sulphatoarsenate bio-nanocomposite. Bio-nanocomposite has the potential to degrade Trifluralin (93.54%) within in 160 min. The influence of other parameters on the photodegradation of Trifluralin were also investigated such as photocatalyst dosage, pH effect and time. The ion exchange capacity of the starch-Ce(IV) sulphatoarsenate composite ion exchanger was found to be 1.77 meq/g, as compared to Ce(IV) sulphatoarsenate which was 0.35 meq/g. Starch-Ce(IV) sulphatoarsenate was found highly selective for arsenic metal ion with enhanced Kd value of 87.3 mL/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sharma A, Thakur M, Kumar A, Gautam M, Kumari S, Pathania D, Sharma A (2023) Efficient photodegradation of fast sulphon black and crystal violet dyes from water systems using locust bean gum (LBG)-encapsulated zirconium-based nanoparticles and antibacterial activity. Nanotechnol Environ Eng 8:859–877

    Article  CAS  Google Scholar 

  2. Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110:445–456

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pedrero F, Kalavrouziotis I, Alarcón JJ, Koukoulakis P, Asano T (2010) Use of treated municipal wastewater in irrigated agriculture—review of some practices in Spain and Greece. Agri Water Manag 97:1233–1241

    Article  Google Scholar 

  4. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  5. Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture. Precis Agric 13:693–712

    Article  CAS  Google Scholar 

  6. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. The Lancet 371:597–607

    Article  CAS  Google Scholar 

  7. Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ (2007) Cancer health effects of pesticides: systematic review. Can Fam Phys 53:1704–1711

    CAS  Google Scholar 

  8. Kumari A, Kumar A, Thakur M, Pathania D, Rani A, Sharma A (2023) Murraya Koenigii plant-derived biochar (BC) and lanthanum ferrite (BC/LaFeO3) nano-hybrid structure for efficient ciprofloxacin adsorption from waste water. Chem Afr 6:3079–3095

    Article  CAS  Google Scholar 

  9. Thakur M, Sharma A, Kumar A, Gautam M, Kumari S (2023) Bio-synthesis of lead oxide nanoparticles using Chinese Mahogany plant extract (CMPE@ LO) for photocatalytic and antimicrobial activities. BioNanoScience 13:1896–1910

    Article  Google Scholar 

  10. Barr DB, Needham LL (2002) Analytical methods for biological monitoring of exposure to pesticides: a review. J Chromatogr B Biomed Appl 778:5–29

    Article  CAS  Google Scholar 

  11. Kumar A, Pathania D, Gupta N, Raj P, Sharma A (2020) Photo-degradation of noxious pollutants from water system using Cornulaca monacantha stem supported ZnFe2O4 magnetic bio-nanocomposite. Sustain Chem Pharm 18:100290

    Article  Google Scholar 

  12. Thakur M, Pathania D (2019) Sol–gel synthesis of gelatin–zirconium (IV) tungstophosphate nanocomposite ion exchanger and application for the estimation of Cd (II) ions. J Sol-Gel Sci Technol 89:700–712

    Article  CAS  Google Scholar 

  13. Pathania D, Agarwal S, Gupta VK, Thakur M, Alharbi NS (2018) Zirconium (IV) phosphate/poly (gelatin-cl-alginate) nanocomposite as ion exchanger and Al3+ potentiometric sensor. Int J Electrochem Sci Technol 13:994–1012

    Article  CAS  Google Scholar 

  14. Pathania D, Thakur M, Jasrotia S, Agarwal S, Gupta VK (2017) Composite ion exchangers as new age photocatalyst. Int J Electrochem Sci 12:8477–8494

    Article  CAS  Google Scholar 

  15. Kumar A, Sharma G, Thakur M, Pathania D (2019) Sol–gel synthesis of polyacrylamide-stannic arsenate nanocomposite ion exchanger: binary separations and enhanced photocatalytic activity. SN Appl Sci 1:862

    Article  Google Scholar 

  16. Kaur K, **dal R (2018) Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents. J Environ Chem Eng 6:7091–7101

    Article  CAS  Google Scholar 

  17. Boussahel R, Bouland S, Moussaoui KM, Montiel A (2000) Removal of pesticide residues in water using the nanofiltration process. Desalination 132:205–209

    Article  CAS  Google Scholar 

  18. Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J, Maldonado MI, Herrmann JM (2003) Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl Catal 46:319–332

    Article  CAS  Google Scholar 

  19. Kumar A, Chandel M, Thakur M (2021) Structural modifications of carbon nitride for photocatalytic applications. Photocatal Adv Eng Mater 100:299–331

    CAS  Google Scholar 

  20. Kumar A, Sharma SK, Kumar A, Sharma G, AlMasoud N, Alomar TS, Naushad M, ALOthman ZA, Stadler FJ (2021) High interfacial charge carrier separation in Fe3O4 modified SrTiO3/Bi4O5I2 robust magnetic nano-heterojunction for rapid photodegradation of diclofenac under simulated solar-light. J Clean Prod 315:128137

    Article  CAS  Google Scholar 

  21. Pathania D, Sharma A, Kumar S, Srivastava AK, Kumar A, Singh L (2021) Bio-synthesized Cu–ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination. Chemosphere 277:130315

    Article  CAS  PubMed  Google Scholar 

  22. Kumar A, Chandel M, Sharma A, Thakur M, Kumar A, Pathania D, Singh L (2021) Robust visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: Clozapine. J Environ Chem Eng 9:106159

    Article  CAS  Google Scholar 

  23. Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigm 49:11–25

    Article  Google Scholar 

  24. Bedos C, Rousseau-Djabri MF, Flura D, Masson S, Barriuso E, Cellier P (2002) Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin. Atmos Environ 36:5917–5925

    Article  CAS  Google Scholar 

  25. Sadeghi F, Fadaei A, Mohammadi-Moghadam F, Hemati S, Mardani G (2021) Photocatalytic degradation of trifluralin in aqueous solutions by UV/S2O82and UV/ZnO processes: a comparison of removal efficiency and cost estimation. Int J Chem Eng 2021:1–10

    Article  Google Scholar 

  26. Tor JM, Xu C, Stucki JM, Wander MM, Sims GK (2000) Trifluralin degradation under microbiologically induced nitrate and Fe (III) reducing conditions. Environ Sci Technol 34:3148–3152

    Article  CAS  Google Scholar 

  27. Kajitvichyanukul P, Nguyen VH, Boonupara T, Thi LAP, Watcharenwong A, Sumitsawan S, Udomkun P (2022) Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: a review. Environ Res 212:113336

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes TC, Mazzeo DE, Marin-Morales MA (2007) Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside. Pestic Biochem Physiol 88:252–259

    Article  CAS  Google Scholar 

  29. Mir NA, Khan A, Muneer M, Vijayalakhsmi S (2014) Photocatalytic degradation of trifluralin, clodinafop-propargyl, and 1,2-dichloro-4-nitrobenzene as determined by gas chromatography coupled with mass spectrometry. Chromatogr Res Int 2014:261683

    Article  Google Scholar 

  30. Ebrahimpour M, Hassaninejad-Darzi SK, Mousavi HZ, Samadi-Maybodi A (2022) Simultaneous monitoring of the photocatalytic degradation process of trifluralin and pendimethalin herbicides by SBA-15/TiO2 nanocomposite. Environ Nanotechnol Monit Manag 18:100678

    CAS  Google Scholar 

  31. Bagal MV, Nandgawle BA, Thosar RV, Mohod AV, Gogate PR (2023) Degradation of pesticides using hybrid processes based on cavitation and photocatalysis: a review. Environ Qual Manag. https://doi.org/10.1002/tqem.22097

    Article  Google Scholar 

  32. Vaya D, Surolia PK (2020) Semiconductor based photocatalytic degradation of pesticides: An overview. Environl Technol Innov 20:101128

    Article  CAS  Google Scholar 

  33. Ali A, **e F, Yu L, Liu H, Meng L, Khalid S, Chen L (2018) Preparation and characterization of starch-based composite films reinfoced by polysaccharide-based crystals. Compos Part B-Eng 133:1122–1128

    Article  Google Scholar 

  34. Qiu C, Wang C, Gong C, McClements DJ, ** Z, Wang J (2020) Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. Int J Biol Macromol 152:117–125

    Article  CAS  PubMed  Google Scholar 

  35. Pathania D, Sharma G, Thakur R (2015) Composite ion exchangers as new age photocatalyst. ChemEng J 267:235–244

    CAS  Google Scholar 

  36. Thakur M, Sharma G, Ahamad T, Ghfar AA, Pathania D, Naushad M (2017) Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr (IV) phosphate nanocomposite and its antimicrobial activity. Colloid Surface B 157:456–463

    Article  CAS  Google Scholar 

  37. Raizada P, Singh P, Kumar A, Sharma G, Pare B, Jonnalagadda SB, Thakur (2014) Polar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl Catal A-Gen 486:159–169

    Article  CAS  Google Scholar 

  38. Jimmy CY, Yu J, Zhang L, Ho W (2002) Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. J Photochem Photobiol A 148:263–271

    Article  Google Scholar 

  39. Habib IY, Kumara NT, Lim CM, Mahadi AH (2018) Dynamic light scattering and zeta potential studies of ceria nanoparticles. Solid State Phenom 278:112–120

    Article  Google Scholar 

  40. Zhang Z, Sun J, Li C, Marhaba TF, Zhang W, Zhang Y (2016) Arsenic speciation by sequential extraction from As-Fe precipitates formed under different coagulation conditions. Water Air Soil Pollut 227:309

    Article  Google Scholar 

  41. Pathania D, Thakur M, Puri V, Jasrotia S (2018) Composite ion exchangers as new age photocatalyst. Adv Powder Technol 29:915–924

    Article  CAS  Google Scholar 

  42. Pathania D, Thakur M, Sharma G, Mishra AK (2018) Tin (IV) phosphate/poly (gelatin-cl-alginate) nanocomposite: Photocatalysis and fabrication of potentiometric sensor forPb (II). Today Commun 14:282–293

    CAS  Google Scholar 

  43. Pathania D, Gupta D, Ala’a H, Sharma G, Kumar A, Naushad M, Ahamad T, Alshehri SM (2016) Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol A 329:61–68

    Article  CAS  Google Scholar 

  44. Kant S, Pathania D, Singh P, Dhiman P, Kumar A (2014) Removal of malachite green and methylene blue by Fe0. 01Ni0. 01Zn0. 98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl Catal 147:340–352

    Article  CAS  Google Scholar 

  45. Pathania D, Sharma G, Kumar A, Kothiyal NC (2014) Fabrication of nanocomposite polyaniline zirconium (IV) silicophosphate for photocatalytic and antimicrobial activity. J Alloy Compd 588:668–675

    Article  CAS  Google Scholar 

  46. Hasanzadeh A, Khataee A, Zarei M, Joo SW (2018) Photo-assisted electrochemical abatement of trifluralin using a cathode containing a C60-carbon nanotubes composite. Chemosphere 199:510–523

    Article  CAS  PubMed  Google Scholar 

  47. Ebrahimpour M, Hassaninejad-Darzi SK, Mousavi HZ, Samadi-Maybodi A (2022) Simultaneous monitoring of the photocatalytic degradation process of 2) trifluralin and pendimethalin herbicides by SBA-15/TiO2 nanocomposite. Environ Nanotechnol Monit Manag 18:100678

    CAS  Google Scholar 

  48. Hosseini N, Toosi MR (2019) Removal of 2, 4-D, glyphosate, trifluralin, and butachlor herbicides from water by polysulfone membranes mixed by graphene oxide/TiO2 nanocomposite: Study of filtration and batch adsorption. J Environ Health Sci Eng 17:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar A, Chandel M, Sharma A, Thakur M, Kumar A, Pathania D, Singh L (2021) visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: Clozapine. J Environ Chem Eng 9:106159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manita Thakur.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest among this research work.

Consent to Publish

Informed consent was obtained from all Authors included in this research work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Kumar, A., Sharma, A. et al. Synthesis of Potato-Starch Based Bio-nanocomposite for the Removal of Trifluralin Under Visible Light Illumination. Chemistry Africa 7, 1981–1993 (2024). https://doi.org/10.1007/s42250-024-00888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00888-4

Keywords

Navigation