Log in

Exploring the Therapeutic Potential of Wild Edible Mushrooms: Safety Evaluation and Isolation of Antimycobacterial Sterols from Afrocantharellus platyphyllus (Heinem.) Tibuhwa

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Purpose

Afrocantharellus platyphyllus (Heinem.) Tibuhwa (family Cantharellaceae) is a wild mushroom that is used for food and in the management of diseases by communities in Southern Tanzania. The current study investigated the safety and potential of the mushroom A. platyphyllus to yield active antimycobacterial compounds.

Methods

Preliminary safety evaluation was done using the brine shrimp lethality test (BST) and white albino mice. An 80% ethanolic extract of A. platyphyllus fruiting bodies was separated by using a liquid–liquid partitioning and the anti-mycobacteria compounds were isolated by column chromatography. The structures for isolated compounds were determined using Nuclear Magnetic Resonance (NMR) Spectroscopy.

Results

In the acute oral toxicity test none of the mice used showed any sign of toxicity during the 14 days’ observation. Similarly, the mushroom extract was mildly toxic to brine shrimps with LC50 of 61.94 μg/mL. The bioassay guided fractionation yielded two known compounds Cerevisetrol (1) and (22E, 24R)-Ergosta-5α, 6α-epoxy-8,22-diene-3β,7α-diol (2). These compounds were isolated for the first time from the genus Afrocantharellus and A. platyphyllus species were active against Mycobacteria with MICs ranging from 9.50 to 39.00 µg/mL against Mycobacterium indicus pranii (MIP), 19.00 to 78.00 µg/mL against Mycobacterium madagascariense (MM), 19.00 µg/mL to 78.00 µg/mL against a standard Mycobacterium tuberculosis strain (Mtb1) and 78.00 µg/mL to 312.00 µg/mL against a resistant clinical Mycobacterium isolate (Mtb2) against compounds 1 and 2 respectively.

Conclusion

A. platyphyllus, an edible mushroom yielded two known compounds with antimycobacterial properties which are potential scaffold for antimycobacterial drug design. These findings support further initiatives to evaluate other traditionally used mushrooms for antimycobacterial and other biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

HIV:

Human immunodeficiency virus

IRB:

Institutional review board

AIDS:

Acquired Immunodefficiencey Syndrome

SAR:

Structure activity relationship

BST:

Brine shrimp lethality test

COSY:

Correlated spectroscopy

HMBC:

Heteronuclear multiple bond correlation

TLC:

Thin layer chromatography

OECD:

Organisation for economic co-operation

FBDD:

Fragment-based drug design and development

HSQC:

Heteronuclear single quantum coherence

MIP:

Mycobacterium indicus pranii

DAAD:

German academic exchange service

MM:

Mycobacterium madagascariense

Mtb:

Mycobacterium tuberculosis

INT:

Iodonitrotetrazolium chloride salt

ITM:

Institute of traditional medicine

MA:

Mycobacterium aurum

MIC:

Minimum inhibitory concentration

MDR TB:

Multidrug resistant tuberculosis

MUHAS:

Muhimbili university of health and allied sciences

DMSO:

Dimethyl sulfoxide

XDR TB:

Extensively drug resistant tuberculosis

NMR:

Nuclear magnetic resonance

TDR TB:

Totally drug resistant tuberculosis

LC:

Lethality concentration

References

  1. Valle DL Jr, Andrade JI, Puzon JJM, Cabrera EC, Rivera WL (2015) Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed 5(7):532–540

    Article  Google Scholar 

  2. Härkönen M, Niemelä T, Mwasumbi L (2003) Tanzanian mushrooms. Edible, harmful and other fungi. Luonnontieteellinen keskusmuseo, Kasvimuseo (Finnish Museum of Natural

  3. Sárközy A, Béni Z, Dékány M, Zomborszki ZP, Rudolf K, Papp V, Ványolós A (2020) Cerebrosides and steroids from the edible mushroom Meripilus giganteus with antioxidant potential. Molecules 25(6):1–8

    Article  Google Scholar 

  4. Chuluunbaatar B, Béni Z, Dékány M, Kovács B, Sárközy A, Datki Z, Ványolós A (2019) Triterpenes from the mushroom hypholoma lateritium: Isolation, structure determination and investigation in bdelloid rotifer assays. Molecules. https://doi.org/10.3390/molecules24020301

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yazdani M, Béni Z, Dékány M, Papp V, Lázár A, Burián K, Ványolós A (2020) Isolation and characterization of chemical constituents from the mushroom Clitocybe nebularis. J Res Pharm 24(6):908–913

    CAS  Google Scholar 

  6. Ha JW, Kim J, Kim H, Jang W, Kim KH (2020) Mushrooms: an important source of natural bioactive compounds. Nat Prod Sci 26(2):118–131

    Article  CAS  Google Scholar 

  7. Qwarse M, Moshi M, Mihale MJ, Marealle AI, Sempombe J, Mugoyela V (2021) Knowledge on utilization of wild mushrooms by the local communities in the Selous-Niassa corridor in Ruvuma region, Tanzania. J Yeast Fungal Res Full 12(June):8–19

    Google Scholar 

  8. Basera TJ, Ncayiyana J, Engel ME (2017) Prevalence and risk factors of latent tuberculosis infection in Africa: a systematic review and meta-analysis protocol. BMJ Open 7(7):1–5. https://doi.org/10.1136/bmjopen-2016-012636

    Article  Google Scholar 

  9. Arya N, Raut M, Tekale S, Shishoo C, Jain K (2014) Tuberculosis: new drug discovery pipelines. Austin J Anal Pharm Chem 1(3):1–9

    Google Scholar 

  10. Marealle AI, Innocent E, Andrae-Marobela K, Qwarse M, Machumi F, Nondo RRSO, Moshi MJ (2022) Safety evaluation and bioassay-guided isolation of antimycobacterial compounds from Morella salicifolia root ethanolic extract. J Ethnopharmacol 296(June):115501. https://doi.org/10.1016/j.jep.2022.115501

    Article  CAS  PubMed  Google Scholar 

  11. Pisutthanan S, Plianbangchang P, Pisutthanan N, Ruanruay S, Muanrit O (2004) Brine shrimp lethality activity of Thai medicinal plants in the family Meliaceae. Naresuan Univ J 12(2):13–18

    Google Scholar 

  12. Vajha M, Siva C, Krishna R (2014) Evaluation of cytotoxicity in selected species of Caralluma and Boucerosia. Asian J Plant Sci Res 4(4):44–47

    Google Scholar 

  13. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DEj, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(05):31–34

    Article  CAS  PubMed  Google Scholar 

  14. Hamidi M, Jovanova B, Panovska T (2014) Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Macedonian Pharm Bulletin 60(1):9–18. https://doi.org/10.33320/maced.pharm.bull.2014.60.01.002

    Article  Google Scholar 

  15. Sarah QS, Anny FC, Misbahuddin M (2017) Brine shrimp lethality assay. Bangladesh J Pharm 12(2):186–189

    Article  Google Scholar 

  16. OECD. (2022). Test guideline 425: acute oral toxicity—up-and-down procedure. guideline for testing of chemicals, (December), 26

  17. Choma I, Jesionek W (2015) TLC-Direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography 2(2):225–238

    Article  CAS  Google Scholar 

  18. Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64(08):711–713

    Article  CAS  PubMed  Google Scholar 

  19. Erasto P, Mbwambo Z, Nondo R, Lall N, Lubschagne A (2011) Antimycobacterial, antioxidant activity and toxicity of extracts from the roots of Rauvolfia vomitoria and R. caffra. Spatula DD Peer Rev J Complement Med Drug Discov 1(2):73

    Google Scholar 

  20. Litchfield JT Jr, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96(2):99–113

    CAS  PubMed  Google Scholar 

  21. Finney DJ (1971) Probit analysis, vol 60. Cambridge University Press, New York

    Google Scholar 

  22. Moshi MJ, Cosam JC, Mbwambo ZH, Ka**u M, Nkunya MHH (2004) Testing beyond ethnomedical claims: brine shrimp lethality of some Tanzanian plants. Pharm Biol 42(7):547–551

    Article  Google Scholar 

  23. Moshi MJ, Innocent E, Magadula JJ, Otieno DF, Weisheit A, Mbabazi PK, Nondo RSO (2010) Brine shrimp toxicity of some plants used as traditional medicines in Kagera region, north western Tanzania. Tanzania J Health Res 12(1):7

    Article  Google Scholar 

  24. Appiah T, Agyare C, Luo Y, Boamah VE, Boakye YD (2020) Antimicrobial and resistance modifying activities of cerevisterol isolated from Trametes species. Curr Bioactive Compd 16(2):115–123

    Article  CAS  Google Scholar 

  25. Nguyen DTM, Do LTM, Tuyet HTN, Ho MKQ, Nguyen HT, Mortier J, Nguyen PKP (2019) Chemical constituents of the lichen Dendriscosticta platyphylloides, Lobariaceae. VNUHCM J Sci Technol Dev 22(1):165–172

    Article  Google Scholar 

  26. Sun Y, Tian L, Huang J, Li W, Pei Y (2006) Cytotoxic sterols from marine-derived fungus Pennicillium sp. Nat Prod Res 20(04):381–384

    Article  CAS  PubMed  Google Scholar 

  27. Yaoita Y, Machida K (2017) Structure Revision of 5β, 6β-Epoxy-(22 E)-ergosta-8, 22-diene-3β, 7β-diol from the Gorgonian Pinnigorgia sp. Nat Prod Commun 12(8):1–5

    Google Scholar 

  28. Ndanyi MK, Kamau D, Karanja S (2021) Phytochemical screening and acute oral toxicity study of Myrica salicifolia (Bayberry) root extracts. IOSR J Pharm Biol Sci (IOSR-JPBS) 16(3):1–5

    Google Scholar 

  29. Mendoza G, Suárez-Medellín J, Espinoza C, Ramos-Ligonio A, Fernández JJ, Norte M, Trigos Á (2015) Isolation and characterization of bioactive metabolites from fruiting bodies and mycelial culture of Ganoderma oerstedii (Higher Basidiomycetes) from Mexico. Int J Med Mushrooms 17(6):501

    Article  PubMed  Google Scholar 

  30. Ragasa CY, Tan MCS, De Castro ME, De Los Reyes MM, Oyong GG, Shen CC (2018) Sterols from Lentinus tigrinus. Pharmacogn J 10(6):1079–1081

    Article  CAS  Google Scholar 

  31. Akihisa T, Franzblau SG, Tokuda H, Tagata M, Ukiya M, Matsuzawa T, Yasukawa K (2005) Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus. Biol Pharm Bulletin 28(6):1117–1119. https://doi.org/10.1248/bpb.28.1117

    Article  CAS  Google Scholar 

  32. Zjawiony JK (2007) Antitubercular activity of mushrooms (Basidiomycetes) and their metabolites. Nat Prod Commun 2(3):1–4

    Google Scholar 

  33. Godtfredsen WO, Jahnsen S, Lorck H, Roholt K, Tybring L (1962) Fusidic acid: a new antibiotic. Nature 193:987

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Fabry W, Schmid EN, Ansorg R (1995) Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium tuberculosis. Zentralblatt für Bakteriologie 282(4):394–401

    Article  CAS  PubMed  Google Scholar 

  35. Singh K, Kaur G, Shanika PS, Dziwornu GA, Okombo J, Chibale K (2020) Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity. Bioorganic Med Chem 28(13):115530

    Article  CAS  Google Scholar 

  36. Tu B, Cao N, Zhang B, Zheng W, Li J, Tang X, Wu P (2022) Synthesis and biological evaluation of novel fusidic acid derivatives as two-in-one agent with potent antibacterial and anti-inflammatory activity. Antibiotics 11(8):1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long J, Ji W, Zhang D, Zhu Y, Bi Y (2021) Bioactivities and structure–activity relationships of fusidic acid derivatives: a review. Front Pharmacol 12(October):1–14

    Google Scholar 

  38. Martins D, Carrion LL, Ramos DF, Salomé KS, da Silva PEA, Andersson B, Nunez CV (2014) Anti-tuberculosis activity of oleanolic and ursolic acid isolated from the dichloromethane extract of leaves from Duroia macrophylla. BMC Proc 8(S4):3–4

    Article  Google Scholar 

  39. Zhabinskii VN, Drasar P, Khripach VA (2022) Structure and biological activity of ergostane-type steroids from fungi. Molecules 27(7):2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanachatchairatana T, Bremner JB, Chokchaisiri R, Suksamrarn A (2008) Antimycobacterial activity of cinnamate-based esters of the triterpenes betulinic, oleanolic and ursolic acids. Chem Pharm Bulletin 56(2):194–198

    Article  CAS  Google Scholar 

  41. Li Q (2020) Application of fragment-based drug discovery to versatile targets. Front Mol Biosci 7(August):1–13

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. Marealle AI, Qwarse M, Innocent E, Nondo RSO, Machumi F, Andrae-Marobela K, Moshi MJ (2023) Bioassay-guided isolation of antimycobacterial compounds from Aphloia theiformis (Vahl) Benn root ethanolic extract. Phytomed Plus 3(1):100406

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the German Academic Exchange Service (DAAD) for financial support to conduct this research work. Antimycobacterial activity screening against M. aurum was conducted by Ms Katlego Makale at Botswana University, we appreciate her service

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MQ: Conducted the laboratory experiments and drafted the manuscript for this study. MQ, AAM, AIM and MM: Data curation, and analysis with technical support from FM, JS, and MH. The manuscript was reviewed by MJM and VM. MM supported the design of the study, review of results and edited drafts of the manuscript. The manuscript is approved by all authors before submission for publication.

Corresponding author

Correspondence to Michael Qwarse.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 52 KB)

Supplementary file2 (PNG 40 KB)

Supplementary file3 (PNG 40 KB)

Supplementary file4 (PNG 39 KB)

Supplementary file5 (PNG 36 KB)

Supplementary file6 (PNG 32 KB)

Supplementary file7 (PNG 33 KB)

Supplementary file8 (PNG 39 KB)

Supplementary file9 (PNG 55 KB)

Supplementary file10 (PNG 42 KB)

Supplementary file11 (PNG 37 KB)

Supplementary file12 (PNG 40 KB)

Supplementary file13 (PNG 30 KB)

Supplementary file14 (PNG 35 KB)

Supplementary file15 (PNG 35 KB)

Supplementary file16 (PNG 43 KB)

Supplementary file17 (PNG 34 KB)

Supplementary file18 (PNG 29 KB)

Supplementary file19 (PNG 27 KB)

Supplementary file20 (PNG 28 KB)

Supplementary file21 (PNG 27 KB)

Supplementary file22 (PNG 28 KB)

Supplementary file23 (PNG 28 KB)

Supplementary file24 (PNG 29 KB)

Supplementary file25 (PNG 27 KB)

Supplementary file26 (PNG 28 KB)

Supplementary file27 (PNG 32 KB)

Supplementary file28 (PNG 30 KB)

Supplementary file29 (PNG 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qwarse, M., Marealle, A.I., Machumi, F. et al. Exploring the Therapeutic Potential of Wild Edible Mushrooms: Safety Evaluation and Isolation of Antimycobacterial Sterols from Afrocantharellus platyphyllus (Heinem.) Tibuhwa. Chemistry Africa 7, 661–670 (2024). https://doi.org/10.1007/s42250-023-00765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00765-6

Keywords

Navigation