Log in

Occurrence and Ecotoxicological Impacts of Fluoroquinolone Antibiotics in Leachates from Three Nigerian Dumpsites

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Solid waste dumpsites receive wastes containing pharmaceuticals and therefore serve as reservoirs of antibiotic residues. Leachates produced from dumpsites are among the principal means of transferring antibiotic residues into the aquatic and soil ecosystems. The occurrence, contamination level and ecotoxicological risk of three fluoroquinolone antibiotics (ciprofloxacin, norfloxacin and ofloxacin) in leachates from three dumpsites in Ibadan, South-Western Nigeria were investigated. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction was adopted for the extraction of target fluoroquinolones, extract was cleaned-up by dispersive-solid phase extraction while instrumental analysis was achieved using high performance liquid chromatography (HPLC). Risk quotient approach was used to estimate the potential ecotoxicological risk of target fluoroquinolone antibiotics to aquatic organisms at three trophic levels (algae, daphnid and fish). Recoveries ranged from 102–128%. Method limits of quantification were 0.35, 1.91 and 11.69 μg L−1 for norfloxacin, ciprofloxacin and ofloxacin, respectively. Inter-day precision (% RSD) ranged from 7–22%. High levels of studied fluoroquinolones were quantified, up to 796 μg L−1 for ofloxacin in leachates from Aba-Eku dumpsite. Based on chronic (long-term) toxicity data, norfloxacin in the leachates posed high risk to the three aquatic organisms. Ciprofloxacin presented moderate risk to algae in only Aba-Eku leachate in spite of the low risk observed for daphnids and fish in leachates from the three investigated dumpsites. Considering the high concentrations and potential risk of target fluoroquinolones in the leachates, groundwater resources around the investigated dumpsites should be monitored in future studies for these antibiotics and other pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

QuEChERS:

Quick, easy, cheap, effective, rugged and safe

HPLC:

High performance liquid chromatography

LOQ:

Limit of quantification

LOD:

Limit of detection

RSD:

Relative standard deviation

ARB:

Antibiotic resistant bacteria

ARGs:

Antibiotic resistance genes

SPE:

Solid phase extraction

dSPE:

Dispersive solid phase extraction

RQ:

Risk quotient

MEC:

Measured environmental concentrations

PNEC:

Predicted no effect concentrations

NOEC:

No observed effect concentration

PSA:

Primary and secondary amine

References

  1. Maia AS, Paíga P, Delerue-Matos C, Castro PML, Tiritan ME (2020) Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ Pollut 259:113927. https://doi.org/10.1016/j.envpol.2020.113927

    Article  CAS  PubMed  Google Scholar 

  2. Wang D, Ning Q, Dong J, Brooks BW, You J (2020) Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Environ Pollut 262:114275. https://doi.org/10.1016/j.envpol.2020.114275

    Article  CAS  PubMed  Google Scholar 

  3. Zhang R, Yang S, An YW, Wang YQ, Lei Y, Song LY (2022) Antibiotics and antibiotic resistance genes in landfills: a review. Sci Total Environ 806:150647. https://doi.org/10.1016/j.scitotenv.2021.150647

    Article  CAS  PubMed  Google Scholar 

  4. Kümmerer K (2009) Antibiotics in the aquatic environment—a review–part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  PubMed  Google Scholar 

  5. Sun Z, Lu Y, Zhu L, Liu W, Qu Y, Lin N, Yu P (2019) Simultaneous separation, concentration, and determination of trace fluoroquinolone antibiotics in environmental samples using a polymer aqueous two-phase system coupled with HPLC. J Chem Technol Biotechnol 94(9):2917–2927. https://doi.org/10.1002/jctb.6095

    Article  CAS  Google Scholar 

  6. Mejías C, Santos JL, Martin J, Aparacio I, Alonso E (2023) Automatised on-line SPE-chiral LC-MS/MS method for the enantiomeric determination of main fluoroquinolones and their metabolites in environmental water samples. Microchem J 185:108217. https://doi.org/10.1016/j.microc.2022.108217

    Article  CAS  Google Scholar 

  7. Sodhi KK, Singh DK (2021) Insight into the fluoroquinolone resistance, sources, ecotoxicity, and degradation with special emphasis on ciprofloxacin. J Water Process Eng 43:102218

    Article  Google Scholar 

  8. Bhatt S, Chatterjee S (2022) Fluoroquinolone antibiotics: occurrence, mode of action, resistance, environmental detection, and remediation—a comprehensive review. Environ Pollut 315:120440

    Article  CAS  PubMed  Google Scholar 

  9. Pretali L, Fasani E, Sturini M (2022) Current advances on the photocatalytic degradation of fluoroquinolones: photoreaction mechanism and environmental application. Photochem Photobiol Sci 21:899–912. https://doi.org/10.1007/s43630-022-00217-z

    Article  CAS  PubMed  Google Scholar 

  10. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501:250–269. https://doi.org/10.1016/j.scitotenv.2014.08.075

    Article  CAS  PubMed  Google Scholar 

  11. Topal M, Topal EIA (2016) Determination and monitoring of tetracycline and degradation products in landfill leachate. Clean: Soil, Air, Water 44(4):444–450. https://doi.org/10.1002/clen.201400938

    Article  CAS  Google Scholar 

  12. Yu X, Sui Q, Lyu S, Zhao W, Wu D, Yu G, Barcelo D (2021) Environ Sci Technol 55:4822. https://doi.org/10.1021/acs.est.0c07588

    Article  CAS  PubMed  Google Scholar 

  13. Ajibola AS (2016) Assessment of trace and major elements contamination in waste soils: leaching potential from active and closed landfills in Lagos, Nigeria. J Environ Earth Sci 6:8–15

    Google Scholar 

  14. Musson SE, Townsend TG (2009) Pharmaceutical compound content of municipal solid waste. J Hazard Mater 162:730–735. https://doi.org/10.1016/j.jhazmat.2008.05.089

    Article  CAS  PubMed  Google Scholar 

  15. Chung SS, Zheng JS, Burket SR, Brooks BW (2018) Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development. Environ Int 115:89–96. https://doi.org/10.1016/j.envint.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Wu D, Huang ZT, Yang K, Graham D, **e B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49:4122–4128. https://doi.org/10.1021/es506081z

    Article  CAS  PubMed  Google Scholar 

  17. You XX, Wu D, Wei HW, **e B, Lu J (2018) Fluoroquinolones and beta-lactam antibiotics and antibiotic resistance genes in autumn leachates of seven major municipal solid waste landfills in China. Environ Int 113:162–169. https://doi.org/10.1016/j.envint.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  18. Bai L, Tan Z, Gong H, Xu M, Li Z, Yue J, Liu L, Yang D, Li R (2022) Study on antibiotics, antibiotic resistance genes, bacterial community characteristics and their correlation in the landfill leachates. J Appl Microbiol 132:445–458. https://doi.org/10.1111/jam.15229

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Wang Y, Tian H, Wei Q, Liu B, Bao G, Liao M, Peng J, Huang X, Wang L (2019) High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 230:337–346. https://doi.org/10.1016/j.chemosphere.2019.05.047

    Article  CAS  PubMed  Google Scholar 

  20. Kachhawaha AS, Nagarnaik PM, Jadhav M, Pudale A, Labhasetwar PK (2017) Optimization of a modified QuEChERS method for multiresidue analysis of pharmaceuticals and personal care products in sewage and surface water by LC-MS/MS. J AOAC Int 100(3):592–597. https://doi.org/10.5740/jaoacint.17-0060

    Article  CAS  PubMed  Google Scholar 

  21. Ajibola AS, Amoniyan OA, Ekoja FO, Ajibola FO (2021) QuEChERS approach for the analysis of three fluoroquinolone antibiotics in wastewater: Concentration profiles and ecological risk in two Nigerian hospital wastewater treatment plants. Arch Environ Contam Toxicol 80:389–401. https://doi.org/10.1007/s00244-020-00789-w

    Article  CAS  PubMed  Google Scholar 

  22. Ajibola AS, Awoyemi TE, Fasogbon OT, Adewuyi GO (2022) QuEChERS-based analysis and ecotoxicological risk of select antibiotics in dumpsite leachates, hospital wastewater and effluent receiving water in Ibadan, Nigeria. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 57(8):709–722. https://doi.org/10.1080/10934529.2022.2104064

    Article  CAS  Google Scholar 

  23. Olarinmoye O, Bakare A, Ugwumba O, Hein A (2016) Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos, Nigeria. J Environ Chem Ecotoxicol 8:14–24. https://doi.org/10.5897/JECE2015.0364

    Article  CAS  Google Scholar 

  24. Ogunbanwo OM, Kay P, Boxall AB, Wilkinson J, Sinclair CJ, Shabi RA, Fasasi AE, Lewis GA, Amoda OA, Brown LE (2022) High concentrations of pharmaceuticals in a Nigerian river catchment. Environ Toxicol Chem 41:551–558. https://doi.org/10.1002/etc.4879

    Article  CAS  PubMed  Google Scholar 

  25. Hu LX, Olaitan OJ, Li Z, Yang YY, Chimezie A, Adepoju-Bello AA, Ying GG, Chen CE (2021) What is in Nigerian waters? Target and non-target screening analysis for organic chemicals. Chemosphere 284:131546. https://doi.org/10.1016/j.chemosphere.2021.131546

    Article  CAS  PubMed  Google Scholar 

  26. Nikolopoulou V, Ajibola AS, Aalizadeh R, Thomaidis NS (2023) Wide-scope target and suspect screening of emerging contaminants in sewage sludge from Nigerian WWTPs by UPLC-qToF-MS. Sci Total Environ 857:159529. https://doi.org/10.1016/j.scitotenv.2022.159529

    Article  CAS  PubMed  Google Scholar 

  27. Ajibola AS, Zwiener C (2022) Occurrence and risk assessment of antibiotic residues in sewage sludge of two Nigerian hospital wastewater treatment plants. Water Air Soil Pollut 233:405. https://doi.org/10.1007/s11270-022-05875-4

    Article  CAS  Google Scholar 

  28. Ajibola A, Olatunji D, Bayode O (2022) Occurrence of veterinary antibiotics in poultry manure from two farms in Ibadan, Nigeria: ecotoxicological implications in manure-amended soil. Environ Anal Health Toxicol 37(4):e2022038. https://doi.org/10.5620/eaht.2022038

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei D, Kisuno A, Kameya T, Urano K (2006) A new method for evaluating biological safety of environmental water with algae, daphnia and fish toxicity ranks. Sci Total Environ 371:383–390. https://doi.org/10.1016/j.scitotenv.2006.08.038

    Article  CAS  PubMed  Google Scholar 

  30. Ebert D (2022) Daphnia as a versatile model system in ecology and evolution. EvoDevo 13:16. https://doi.org/10.1186/s13227-022-00199-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. European Commission (2003) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances, part II, Brussels, Belgium

  32. Rodriguez-Mozaz S, Vaz-Moreira I, Giustina SVD, Llorca M, Barceló D, Schubert S, Berendonk TU, Michael-Kordatou I, Fatta-Kassinos D, Martinez JL, Elpers C, Henriques I, Jaeger T, Schwartz T, Paulshus E, O’Sullivan K, Pärnänen KMM, Virtam M, Do TT, Walsh F, Manaia CM (2020) Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 140:105733. https://doi.org/10.1016/j.envint.2020.105733

    Article  CAS  PubMed  Google Scholar 

  33. Peysson W, Vulliet E (2013) Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A 1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057

    Article  CAS  PubMed  Google Scholar 

  34. Ajibola AS, Tisler S, Zwiener C (2020) Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Methods 12:576–586. https://doi.org/10.1039/C9AY02188D

    Article  CAS  Google Scholar 

  35. Sunyer-Caldú A, Diaz-Cruz MS (2021) Development of a QuEChERS-based method for the analysis of pharmaceuticals and personal care products in lettuces grown in field-scale agricultural plots irrigated with reclaimed water. Talanta 230:122302. https://doi.org/10.1016/j.talanta.2021.122302

    Article  CAS  PubMed  Google Scholar 

  36. Wang K, Reguyal F, Zhuang T (2021) Risk assessment and investigation of landfill leachate as a source of emerging organic contaminants to the surrounding environment: a case study of the largest landfill in **an City, China. Environ Sci Pollut Res 28:18368–18381. https://doi.org/10.1007/s11356-020-10093-8

    Article  CAS  Google Scholar 

  37. Qiao L, Tao Y, Yao W, Zhao J, Yan Y (2022) A magnetic ionic liquid based vortex-assisted dispersive liquid–liquid microextraction coupled with back-extraction for the enrichment of fluoroquinolone antibiotics. J Pharm Biomed Anal 219:114903. https://doi.org/10.1016/j.jpba.2022.114903

    Article  CAS  PubMed  Google Scholar 

  38. Pochivalov A, Cherkashina K, Sudarkin A, Osmolowsky M, Osmolovskaya O, Krekhova F, Nugbienyo L, Bulatov A (2023) Liquid–liquid microextraction with hydrophobic deep eutectic solvent followed by magnetic phase separation for preconcentration of antibiotics. Talanta 252:123868. https://doi.org/10.1016/j.talanta.2022.123868

    Article  CAS  PubMed  Google Scholar 

  39. Lu D, Qin M, Liu C, Deng J, Shi G, Zhou T (2021) Ionic liquid-functionalized magnetic metal−organic framework nanocomposites for efficient extraction and sensitive detection of fluoroquinolone antibiotics in environmental water. ACS Appl Mater Interfaces 13:5357. https://doi.org/10.1021/acsami.0c17310

    Article  CAS  PubMed  Google Scholar 

  40. Zhao S, Sun Z, Liu H, Zhou Y, Li J, Wang X, Gong B (2019) Molecularly imprinted polymer coating on metal-organic frameworks for solid-phase extraction of fluoroquinolones from Water. J Sep Sci 42:3302–3310

    Article  CAS  PubMed  Google Scholar 

  41. Velpandian T, Halder N, Nath M, Das U, Moksha L, Gowtham L, Batta SP (2018) Un-segregated waste disposal: an alarming threat of antimicrobials in surface and groundwater sources in Delhi. Environ Sci Pollut Res 25:29518–29528. https://doi.org/10.1007/s11356-018-2927-9

    Article  Google Scholar 

  42. Wang Y, Lei Y, Liu X, Song L, Hamid N, Zhang R (2022) Sulfonamide and tetracycline in landfill leachates from seven municipal solid waste (MSW) landfills: seasonal variation and risk assessment. Sci Total Environ 825:153936. https://doi.org/10.1016/j.scitotenv.2022.153

    Article  CAS  PubMed  Google Scholar 

  43. He P, Huang J, Yu Z, Xu X, Raga R, Lu F (2021) Antibiotic resistance contamination in four Italian municipal solid waste landfills sites spanning 34 years. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129182

    Article  PubMed  PubMed Central  Google Scholar 

  44. ** H, Sun JZ, **e B (2018) The study of characteristics of antibiotic residues in municipal solid waste landfill. Acta Sci Circumst 38:300–309

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance rendered by the staff of the investigated dumpsites in samples collection.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinranti S. Ajibola.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibola, A.S., Agberotimi, J.B. & Obanubi, A.I. Occurrence and Ecotoxicological Impacts of Fluoroquinolone Antibiotics in Leachates from Three Nigerian Dumpsites. Chemistry Africa 7, 443–453 (2024). https://doi.org/10.1007/s42250-023-00748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00748-7

Keywords

Navigation