Log in

Variation in Structural Chemical Reactivity and Nonlinear Optical (NLO) Properties of C56H16 Nanotube After Endohedral Do** of Superalkali (Na2F) and Superhalogen (BF4): A DFT Study

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The carbon nanotube’s (C56H16) stability and drug delivery capacity have already been investigated. The interaction of carbon nanotube C56H16 with superhalogen BF4 and superakali Na2F is studied using density functional theory (DFT), which resulted in the formation of the Na2F-CNT@BF4 endohedral complex. QTAIM analysis is used to calculate the nonbonding interactions (NICS) in Na2F-CNT@BF4 at the bond critical point (BCP). The charge transfer from BF4@CNT to superalkali entity Na2F has been observed, stabilizing Na2F-CNT@BF4. The calculated intensity as well as assignments of infrared spectra of CNT@BF4 and electronic transitions are compared with Na2F-CNT@BF4, which provides CNT’s polarization properties via interactions with Na2F and BF4. The charge transfer from CNT@BF4 to Na2F results in a large dipole moment (7.8969 D) of the complex, implying that its polarizability (588.4983 au) is comparable to that of CNT@BF4; however, the hyperpolarizability (4551.9858 au) of Na2F-CNT@BF4 is much higher than that of BF4@CNT. In this way, we hope that Na2F-CNT@BF4 will pique the interest of researchers interested in expanding the electro-optical applications of Na2F-CNT@BF4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari AD, Nayak GC (2016) Crit Rev Sol State Mat Sci 41:257–317

    Article  CAS  Google Scholar 

  2. Jabbar ML, Kadhim KJ (2021) Russ J Phys Chem B 15:46–52

    Article  CAS  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  4. Iijima S (1991) Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  5. Dresselhaus MS, Dresselhaus G, Avouris A, Rao AM (2000) Carbon Nanotubes. Springer, Berlin, pp 331–379

    Google Scholar 

  6. Mastronardo E, Bonaccorsi L, Kato Y, Piperopoulos E, Lanza M, Milone C (2016) Appl Energy 181:232–243

    Article  CAS  Google Scholar 

  7. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84(24):5552–5555

    Article  CAS  PubMed  Google Scholar 

  8. **e Y, Wang T, Zhu B, Yan C, Zhang P, Wang X, Eres G (2018) Carbon 139:445–458

    Article  CAS  Google Scholar 

  9. Yilmazoglu O, Yadav S, Cicek D, Schneider JJ (2016) Nanotechnology 27:365502 (1–10)

    Article  CAS  PubMed  Google Scholar 

  10. Kamegawa T (2009) Shokubai 51:368–372

    CAS  Google Scholar 

  11. **e S, Li W, Pan Z, Chang B, Lianfeng S (2000) J Phys Chem Sol 61:1153–1158

    Article  CAS  Google Scholar 

  12. Fatemi SM, Foroutan M (2016) Int J Environ Sci Technol 13:457–470

    Article  CAS  Google Scholar 

  13. Mashkoor F, Nasar A, Inamuddin A (2020) Environ Chem Lett 18:605–629

    Article  CAS  Google Scholar 

  14. Ahmad J, Naeem S, Ahmad M, Usman ARA, Al-Wabel MIA (2019) J Environ Manag 246:214–228

    Article  CAS  Google Scholar 

  15. Luo Y, Wang K, Li Q, Fan S, Wang J (2020) Small 16:1902719 (1–13)

    Article  CAS  Google Scholar 

  16. Banerjee S, Hemraj-Benny T, Wong SS (2005) Adv Mater 17:17–29

    Article  CAS  Google Scholar 

  17. Hemraj-Benny T, Banerjee S, Wong SS (2004) Chem Mater 16(10):1855–1863

    Article  CAS  Google Scholar 

  18. Bomboi F, Bonincontro A, La Mesa C, Tardani F (2011) J Colloid Int Sci 355(2):342–347

    Article  CAS  Google Scholar 

  19. Luong JHT, Hrapovic S, Wang D, Bensebaa F, Simard B (2004) Electroanalysis 16(1–2):132–139

    Article  CAS  Google Scholar 

  20. Rybolt T, Jordan H (2021) Appl Nano Mater 2:128–147

    Article  Google Scholar 

  21. Chiou K, Huang J (2020) Matter 3:302–319

    Article  Google Scholar 

  22. Kosar N, Wajid S, Ayub K, Mahmood T (2023) Optik 276:170660

    Article  CAS  Google Scholar 

  23. Asif M, Sajid H, Ayub K, Gilani MA, Mahmood T (2022) Polyhedron 215:115695

    Article  CAS  Google Scholar 

  24. Yaqoob J, Mahmood T, Ayub K, Tabassum S, Khan AF, Perveen S, Yang J, Gilani MA (2022) Euro Phys J Plus 137:233

    Article  CAS  Google Scholar 

  25. Gul S, Bhatti IA, Ayub K, Shawky AM, Iqbal MAJ (2022) Alkali metal (Na and Li) doped C18 nanocluster with boosted electronic and nonlinear optical properties. Optik 271:170185

    Article  CAS  Google Scholar 

  26. Gutsev GL, Bartlett RJ, Boldyrev AI, Simons J (1997) J Chem Phys 107:3867–3875

    Article  CAS  Google Scholar 

  27. Gutsev GL, Boldyrev AI (1982) Chem Phys Lett 92:262–266

    Article  CAS  Google Scholar 

  28. Rehm E, Boldyrev AI, Schleyer PVR (1992) Inorg Chem 31:4834–4842

    Article  CAS  Google Scholar 

  29. Srivastava AK, Srivastava H, Tiwari A, Misra N (2022) Chem Phys Lett 790:139352

    Article  CAS  Google Scholar 

  30. Yang H, Li Y, Wu D, Li ZR (2012) Int J Quant Chem 112:770–778

    Article  CAS  Google Scholar 

  31. Li Y, Wu D, Li ZR (2008) Inorg Chem 47:9773–9778

    Article  CAS  PubMed  Google Scholar 

  32. Srivastava AK, Kumar A, Misra N (2017) Chem Phys Lett 682:20–25

    Article  CAS  Google Scholar 

  33. Wang FF, Li ZR, Wu D, Sun XY, Chen W, Li Y, Sun CC (2006) ChemPhysChem 7:1136–1141

    Article  CAS  PubMed  Google Scholar 

  34. Aoyagi S, Nishibori E, Sawa H et al (2010) Nat Chem 2:678–683

    Article  CAS  PubMed  Google Scholar 

  35. Okada H, Komuro T, Sakai T et al (2012) RSC Adv 2:10624–10631

    Article  CAS  Google Scholar 

  36. Wang S-J, Li Y, Wang Y-F, Wu D, Li Z-R (2013) Phys Chem Chem Phys 15:12903–12910

    Article  CAS  PubMed  Google Scholar 

  37. Srivastava AK, Kumar A, Misra N (2016) Physica E Low Dimens Syst Nanostruct 84:524–529

    Article  CAS  Google Scholar 

  38. Pandey AK, Singh V, Dwivedi A (2021) NANO 16(09):2150106

    Article  CAS  Google Scholar 

  39. Pandey AK, Dwivedi A, Mishra AK, Tiwari SN, Vuai SAH, Singh V (2023) J Ind Chem Soc 100:100851

    Article  CAS  Google Scholar 

  40. Srivastava AK, Misra N (2016) Mol Sim 42(12):981–985

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, Revision C02. Gaussian Inc., Wallingford

    Google Scholar 

  42. Becke AD (1988) Phys Rev A 38:3098–3100 (Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37:785-789)

    Article  CAS  Google Scholar 

  43. Sikorska C, Puzyn T (2015) Nanotechnology 26:455702 (1–10)

    Article  PubMed  Google Scholar 

  44. Srivastava AK, Pandey SK, Misra N (2016) Chem Phy Lett 655–656:71–75

    Article  Google Scholar 

  45. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  46. Frisch A, Nelson AB, Holder AJ (2000) GAUSSVIEW Inc., Pittsburgh

  47. Keith TA, Gristmill TK (2012) AIMAll (Version 12.09.23), Overland Park KS, USA

  48. Padrón JA, Carasco R, Pellón RF (2002) J Pharm Pharm Sci 5:258–266

    PubMed  Google Scholar 

  49. Verma RP, Hansch C (2005) Bioorg Med Chem 13:2355–2372

    Article  CAS  PubMed  Google Scholar 

  50. Verma RP, Kurup A, Hansch C (2005) Bioorg Med Chem 13:237–255

    Article  CAS  PubMed  Google Scholar 

  51. Vuks MF (1966) Opt Spectrosc 20:361–368

    Google Scholar 

  52. Kleinmann DA (1962) Phys Rev 126:1977–1979

    Article  Google Scholar 

  53. Tavakol H, Haghshenas H (2021) Quantum Rep 3:366–375

    Article  Google Scholar 

  54. Srivastava AK, Misra N (2015) Polyhedron 102:711–714

    Article  CAS  Google Scholar 

  55. Srivastava AK, Kumar A, Misra N (2017) J Fluor Chem 197:59–62

    Article  CAS  Google Scholar 

  56. Bader RFW (1990) Atoms in Molecules: A Quantum Theory, 2nd edn. Oxford, New York

    Book  Google Scholar 

  57. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  58. Koch U, Popelier P (1995) J Phys Chem A 99:9747–9754

    CAS  Google Scholar 

  59. Cremer D, Kraka E (1984) Croat Chem Acta 57:1259–1281

    Google Scholar 

  60. Bader RFW, Essen H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  61. Espinosa E, Monils E, Lecomte C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  62. Pearson RG (1985) J Am Chem Soc 107:6801–6806

    Article  CAS  Google Scholar 

  63. Khan MZH, Alrawashdeh AI, Aljohani S, Zhao Y, Lagowski JB (2017) Phys Chem Chem Phys 41:1–12

    Google Scholar 

  64. Omidvar A, Anafcheh M, Hadipour NL (2013) Scientia Iranica Trans F Nanotechnol 20:1014–1017

    Google Scholar 

  65. Koopmans TA (1933) Physica 91:104–113

    Google Scholar 

  66. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  67. Parr RG, Szentpaly LV, Liu SJ (1999) Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  68. Padmanabhan J, Parthasarathi R, Subramaniaan V, Chattaraj PK (2007) J Phys Chem A 111007:1358–1361

    Article  Google Scholar 

  69. Antoine R, Dugourd P, Rayane D, Benichou E, Broyer M, Chandezon F, Guet C (1999) J Chem Phys 110:9771–9772

    Article  CAS  Google Scholar 

  70. Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104:4755–4763

    Article  CAS  Google Scholar 

  71. Peach MJG, Helgaker T, Salek P, Keal TW, Lutnaes OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562

    Article  CAS  PubMed  Google Scholar 

  72. Cai Z-L, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) J Phys Chem B 110:15624–15632

    Article  CAS  PubMed  Google Scholar 

  73. Zhang CR, Chen HS, Wang GH (2004) Structure and properties of semiconductor Microclusters GanPn(n = 1–4): a first principle study. Chem Res Chin Univ 20(5):640–643

    Article  CAS  Google Scholar 

  74. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to Infrared and Raman Spectroscopy, 3rd edn. Academic Press, Boston

    Google Scholar 

  75. Kosar N, Ayub K, Mahmood T (2021) J Mol Graph Mod 102:107794 (1–12)

    Article  CAS  Google Scholar 

  76. Khan P, Mahmood P, Ayub K, Sobia T, Gilani MA (2021) Opt Laser Technol 142:107231 (1–10)

    Article  CAS  Google Scholar 

  77. Mahmood A, Abdullah MI (2015) Khan SU-D. Spectrochem Acta Part A Mol Biomol Spectrosc 139:425–430

    Article  CAS  Google Scholar 

  78. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.S. is grateful and acknowledges the computer resources, technical expertise, and assistance provided by the Center for High-Performance Computing (MATS1467) Cape Town, South Africa.

Funding

Author Anoop Kumar Pandey is grateful and thanks to the Uttar Pradesh government (India) [No:46/2021/603/sattar-4-2021-4(56)/2020] for providing him with financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all the authors. The first draft of the manuscript was written by VS, AD and AKP, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anoop Kumar Pandey.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 926 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Dwivedi, A., Mishra, A.K. et al. Variation in Structural Chemical Reactivity and Nonlinear Optical (NLO) Properties of C56H16 Nanotube After Endohedral Do** of Superalkali (Na2F) and Superhalogen (BF4): A DFT Study. Chemistry Africa 7, 315–327 (2024). https://doi.org/10.1007/s42250-023-00739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00739-8

Keywords

Navigation