Log in

Dry Reforming of Methane Over Ni/ZrO2, Ni/CeO2 and Ni/La2O3 Catalysts: Role of Support Nature and its Synthesis by Microemulsion Method

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A series of catalysts based on nickel supported on different simple oxides ZrO2, CeO2 and La2O3 were prepared by dry impregnation. These latter were prepared by microemulsion. The synthesized catalysts as well as their corresponding supports designated by Ni/ZrO2 Ni/CeO2 Ni/La2O3 were characterized by X-ray diffraction (XRD), the physisorption of nitrogen (N2) and Fourier Transform Infrared spectroscopy (FTIR). The synthesized and characterized catalysts were subsequently tested in the dry reforming of methane reaction to produce the synthesis gas. The study of the effect of the reaction temperature was carried out between 650 and 800 °C. Stability tests were carried out at 700 °C for 3 h of reaction time. The results obtained show that the catalytic performances of catalysts depends on structural properties and not on the good textural properties. Indeed, the catalyst with better textural properties is the least efficient in terms of activity and stability. The two catalysts Ni/CeO2 and Ni/ZrO2 are very active for all the temperatures studied and stable during 3 h of the test at 700 °C. On the other hand, the Ni/La2O3 catalyst exhibits low catalytic activity for all the temperatures studied and deactivate during the test time at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benson SW (1980) U.S. Patent 199: 533

  2. Côme GM (1987) Brevet Français no. 2624115

  3. Vedrenne I, Saint-Just J, Ben-Hadid A, Côme GM (1990) Catal Today 6:381

    Article  CAS  Google Scholar 

  4. Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH (1991) J Catal 132:117–127

    Article  CAS  Google Scholar 

  5. O’Connor AM, Schuurman Y, Ross JRH, Mirodatos C (2006) Catal Today 115:191–198

    Article  CAS  Google Scholar 

  6. Nemeth M, Schay Z, Sranko D, Karolyi J, Safran G, Sajo I, Horvath A (2015) Appl Catal A: Gen 504(608):620

    Google Scholar 

  7. Abasaeed AE, Sofiu ML, Acharya K, Osman AI, Fakeeha AH, Al-Otaibi RL, Ibrahim AA, Al-Awadi AS, Bayahia H, Al-Zahrani SA, Kumar R, Al-Fatesh AS (2023) Energy Sci Eng 11:1436–1450

    Article  CAS  Google Scholar 

  8. Ikkour K, Sellam D, Kiennemann A, Tezkratt S, Cherifi O (2009) Catal Lett 132:213–217

    Article  CAS  Google Scholar 

  9. Gonzalez-Delacruz VM, Ternero F, Pereñíguez R, Caballero A, Holgado JP (2010) Appl Catal A: Gen 384:1–9

    Article  CAS  Google Scholar 

  10. Sellam D, Ikkour K, Dekkar S, Messaoudi H, Belaid T, Roger AC (2019) BCREC 14:568–578

    Article  CAS  Google Scholar 

  11. Djaidja A, Libs S, Kiennemann A, Barama A (2006) Catal Today 113:194–200

    Article  CAS  Google Scholar 

  12. Gadalla AM, Bower B (1987) Chem Eng Sci 43:3049–3062

    Article  Google Scholar 

  13. Hally W, Bitter JH, Seshan K, Lercher JA, Ross JRH (2001) Stud Surf Sci Catal 88:167–173

    Article  Google Scholar 

  14. Gucci L, Erdohelyi A (2012) Catalysis for alternative energy. Springer-Verlag, New York

    Google Scholar 

  15. Ryi S-K, Lee S-W, Park J-W, Oh D-K, Park J-S, Kim SS (2014) Catal Today 236:49–56

    Article  CAS  Google Scholar 

  16. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Appl Catal A: Gen 246:323–334

    Article  CAS  Google Scholar 

  17. Biswas P, Kunzru D (2008) Chem Eng J 136:41–49

    Article  CAS  Google Scholar 

  18. Barbero J, Peña MA, Campos-Martin JM, Fierro JLG, Arias PL (2003) Catal Lett 87:211–218

    Article  CAS  Google Scholar 

  19. Dekkar S, Tezkratt S, Sellam D, Parkhomenko K, Martinez-Martin A, Roger AC (2020) Catal Lett 150:2180–2199

    Article  CAS  Google Scholar 

  20. Barroso-Quiroga MM, Castro-Luna AE (2010) Int J Hydrogen Energy 35:6052–6056

    Article  CAS  Google Scholar 

  21. Lu Y, Li S, Guo L, Zhang X (2010) Int J Hydrogen Energy 35:7161–7168

    Article  CAS  Google Scholar 

  22. Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4:1526–1536

    Article  CAS  Google Scholar 

  23. Cai X, Dong X, Lin W (2008) J Nat Gas Chem 17:98–102

    Article  CAS  Google Scholar 

  24. Zhu J, Peng X, Yao L, Tong D, Hu C (2012) Catal. Sci Technol 2:529–537

    CAS  Google Scholar 

  25. Wang N, Qian W, Chu W, Wei F (2016) Catal Sci Technol 6:3594–3605

    Article  CAS  Google Scholar 

  26. Vasiliades MA, D**ovic P, Pintar A, Kovac J, Efstathiou AM (2017) Catal Sci Technol 7:5422–5434

    Article  CAS  Google Scholar 

  27. Mo L, Leong KKM, Kawi S (2014) Catal Sci Technol 4:2107–2114

    Article  CAS  Google Scholar 

  28. Xu L, Miao Z, Song H, Chen W, Chou L (2014) Catal Sci Technol 4:1759–1770

    Article  CAS  Google Scholar 

  29. Majewski AJ, Wood J, Bujalski W (2013) Int J Hydrog Energy 38:14531–14541

    Article  CAS  Google Scholar 

  30. Trimm DL (1980) Chapter 9. Elsevier, New York

    Google Scholar 

  31. Takahashi R, Sato S, Sodesawa T, Tomiyama S (2005) Appl Catal A Gen 286:142–147

    Article  CAS  Google Scholar 

  32. Xu S, Zhao R, Wang X (2004) Fuel Process Technol 86:123–133

    Article  CAS  Google Scholar 

  33. Rahaman SKM, Bardhanb A, Mandal T, Chakraborty M, Karmakar K, Dhibar S, Sharma S, Chakravarty M, Ibrahim SM, Saha B (2023) N J Chem 47:10309–10321

    Article  CAS  Google Scholar 

  34. Rahaman SKM, Chakraborty M, Mandal T, Kundu S, Dhibar S, Kumar D, Ibrahim SM, Ibrahim SM, Chakravarty M, Saha B (2023) J Mol Liquids 372:121204

    Article  Google Scholar 

  35. Kundu S, Karmakar P, Rahaman SKM, Mitra M, Rajwar S, Dhibar S, Layek M, Sar P, Saha B (2023) N J Chem 47:4364–4373

    Article  CAS  Google Scholar 

  36. Padi P, Shelly L, Komarala EP, Schweke D, Hayun S, Rosen BA (2020) Catal Commun 138:105951

    Article  CAS  Google Scholar 

  37. Köck EM, Kogler M, Bielz T, Klötzer B, Penner S (2013) J Phys Chem C Nanomater Interfaces 117:17666–17673

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Langmuir 14:3556–3564

    Article  CAS  Google Scholar 

  39. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzon A (2000) Catal Today 63:71–85

    Article  CAS  Google Scholar 

  40. Zhang ZL, Verykios XE (1995) J Chem Soc Chem Commun 71–72

  41. Calvino-Casilda V, Martin-Aranda R, Sobczak I, Ziolek M (2006) Appl Catal A 303:121–130

    Article  CAS  Google Scholar 

  42. Yahi N, Menad SI (2015) Green Process Synth 6:479–486

    Google Scholar 

  43. Nassos S, Elm Svensson E, Nilson M, Boutonnet M, Jairas S (2006) Appl Catal B 64

  44. Jahanjeer A, Tokeer A, Rmanujachary KV, Lofland SE, Ganguli AK (2008) J Colloid Interface Sci 321

  45. Damaskinos CM, Vasiliades MA, Stathopoulos VN, Efstathiou AM (2019) Catalysts 9:621

    Article  CAS  Google Scholar 

  46. Khan SB, Faisal M, Rahman MM, Akhtar K, Asiri AM, Khan A, Alamry KA (2013) Int J Electrochem Sci 8:7284–7297

    Article  CAS  Google Scholar 

  47. Zamiri R, Ahangar HA, Kaushal A, Zakaria A, Zamiri G, Tobaldi D, Ferreira JMF (2015) Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS ONE. https://doi.org/10.1371/journal.pone.0122989

    Article  PubMed  PubMed Central  Google Scholar 

  48. Firdous A, Quasim I, Ahmad MM, Kotru PN (2009) J Cryst Growth 311:3855–3862

    Article  CAS  Google Scholar 

  49. Nakamato K (1986) Infrared and Raman spectra of inorganic and coordination compound, 4th edn. Wiley, New York

    Google Scholar 

  50. Fernandes JDG, Melo DMA, Zinner LB, Salustiano CM, Silva ZR, Martinelli AE, Cerqueira M, AlvesJúnior C, Longo E, Bernardi MIB (2002) Mater Lett 53:122–125

    Article  CAS  Google Scholar 

  51. Lustemberg PG, Ramírez PJ, Liu ZY, Gutiérrez RA, Grinter DG, Carrasco J, Senanayake SD, Rodriguez JA, Ganduglia-Pirovano MV (2016) ACS Catal 6:8184–8191

    Article  CAS  Google Scholar 

  52. Liu ZY, Grinter DC, Lustemberg PG, Nguyen-Phan T-D, Zhou YH, Luo S, Waluyo I, Crumlin EJ, Stacchiola DJ, Zhou J (2016) Angew Chem Int Ed 55:7455–7459

    Article  CAS  Google Scholar 

  53. Singh S, Zubenko D, Rosen BA (2016) ACS Catal 6:4199–4205

    Article  CAS  Google Scholar 

  54. Dacquin J-P, Sellam D, Batiot-Dupeyrat C, Tougerti A, Duprez D (2014) R S Chem Sustain Chem 7:631–637

    Article  CAS  Google Scholar 

  55. Rezaei M, Alavi SM, Sahebdelfar S, **nmei L, Qian L, Yan ZF (2007) Fuels 21:581–589

    Article  CAS  Google Scholar 

  56. Li X, Li D, Tian H, Zeng L, Zhao ZJ, Gong J (2017) Appl Catal B 202:683–694

    Article  CAS  Google Scholar 

  57. Mustu H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, D**ovic P, Pintar A (2015) Int J Hydrogen Energy 40:3217–3228

    Article  CAS  Google Scholar 

  58. Sophiana IC, Iskandar F, Devianto H, Nishiyama N, Bodhi YW (2022) Nanomaterials 12:1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by Laboratoire de Genie Chimique et de Chimie Appliquée de l'Université Mouloud Mammeri de Tizi–Ouzou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Dekkar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekkar, S. Dry Reforming of Methane Over Ni/ZrO2, Ni/CeO2 and Ni/La2O3 Catalysts: Role of Support Nature and its Synthesis by Microemulsion Method. Chemistry Africa 7, 1–11 (2024). https://doi.org/10.1007/s42250-023-00730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00730-3

Keywords

Navigation