Log in

Feasibility of the Demolition Waste Incorporation as an Additive to Cement: Comparative Study According to Current Standards

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In cement industry, clinkerization has caused serious harm to the environment. For this reason, nowadays, research aims to partial replacement of clinker with recycling solids wastes materials in cement building to improve more the productivity for the cement industry as well as to maintain the quality of the obtained products. The present study investigated the effect of demolition waste’s incorporation in cement building as an additive on chemical properties of the new materials to determine its classification according to the EN 197-1 standard. Therefore, the compressive strength of the developed cement was successfully evaluated. As a result, all the types of studied wastes could be considered as ordinary cement of two classes: CEM I 42.5 N and CEM II AL 42.5 N. according to CEN 196-1 standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghfourian K, Ismail S, Mohamed Z (2018) Construction and demolition Waste: it’s Origins and causes. Am Sci Publishers 24(6):4132–4137. https://doi.org/

    Google Scholar 

  2. Brasseul J (2013) Dans petite histoire des faits économiques et sociaux. Chapitre 4 - l’industrialisation dans le monde au xixe siècle. Paris 320:121–163

    Google Scholar 

  3. Tefesse S, Girma YE, Dessalegn E (2022) Analysis of the socio-economic and environmental impacts of construction waste and management practices.Heliyon 8:3 https://doi.org/10.1016/j.heliyon.2022.e09169

  4. McElory MB, Somerville R (2002)the Atmospheric Environment: Effects of Human Activity. Am J Phys 70(11) https://doi.org/10.1119/1.1509543

  5. Khan WS, Asmatulu E, Uddin MN, Asmatulu R (2022) Recycling and reusing of construction materials. Recycling and Reusing of Engineering Materials 351:85–103. https://doi.org/10.1016/B978-0-12-822461-8.00008-5

    Article  Google Scholar 

  6. Taylor H (1990) Cement Chemistry. Academic Press, London

    Google Scholar 

  7. Sorrentino F (2011) Chemistry and engineering of the production process: state of the art. Cem Concr Res 41(7):616–623. https://doi.org/10.1016/j.cemconres.2011.03.013

    Article  CAS  Google Scholar 

  8. Mahmoudi S, Bennour A, Chalwati Y, Souidi K, Thabet M, Srasra E, Zargouni F (2016) Tunisian gypsums: characteristics and use in cement. J Afr Earth Sc 121:267–273. https://doi.org/10.1016/j.jafrearsci.2016.05.023

    Article  CAS  Google Scholar 

  9. Eriksson B-A, Sjobeck R, Ljunggren K (2014) Jaw Crusher. USPTO TOS

  10. Ghalandari V, Iranmanesh A (2020) Energy and exergy analyses for a cement ball mill of a new generation cement plant and optimizing grinding process: a case study. Adv Power Technol 31(5):1796–1810. https://doi.org/10.1016/j.apt.2020.02.013

    Article  Google Scholar 

  11. Chen ZW, Gibson WM, Huang H (2008) High definition X-Ray fluorescence: principles and Techniques.X-Ray. Opt Instrum 10:1–8. https://doi.org/10.1155/2008/318171

    Article  Google Scholar 

  12. Pansu M, Gautheyrou J (2003) Hand book of soil Analysis, Mineralogical, Organic and Inorganic 995: 8–11 France

  13. NF EN196-6 (1990) Méthodes d’essais des. Ciments-Détermination de la finesse

  14. Balonis M, Glasser FP (2009) Cement and concrete research, the density of cement phases 39(9): 733–739 https://doi.org/10.1016/j.cemconres.2009.06.005

  15. NF EN196-1(Avril (2006) Méthodes d’essais des Ciments-Partie 1:Détermination des résistances mécaniques

  16. Ghomari M, Bendi-Ouisa F (2007) Sci des matériaux de Constr 6:1–5

    Google Scholar 

  17. EN 197-1 (2000) Norme Européenne Ciment-Partie 1: Composition, Spécification et conformité des ciments conformité des ciments courants

  18. Li Z, Zhou X, Ma H, Hou D (2022) Introduction to concrete. Adv Concrete Technol 611:1–23. https://doi.org/10.1002/9781119806219.ch1

    Article  Google Scholar 

  19. Jackson, Julia A (1997) Magnesian limestone. Glossary of geology (Fourth ed) American Geological Institute.Alexandria.Virginia https://doi.org/10.1002/0471238961.1209130507212019.a01.pub3

  20. Banessy S, Germain J (2004) La Brique. L’or rouge du Midi toulousain 92:48–50

    Google Scholar 

  21. Mariyappillai A, NK S (2008) Types of Earthenware’s and its uses. Shanlax Int J arts Sci Humanit 8(2):107–112. https://doi.org/10.34293/sijash.v8i2.3323

    Article  Google Scholar 

  22. Seraj S, Cano R, Ferron P R and, Juenger CG M (2015) Calcined Shale as low cost. Supplementary Cementitious Material 10:531–537. https://doi.org/10.1007/978-94-017-9939-3_66

    Article  Google Scholar 

  23. Dubois Petroff M-P (2007) Le carrelage. Massin Matieres Et Materiaux,Paris

  24. Mouquin S (2016) Les marbres: noblesse de la nature heureuses « Curiosité » de la nature. Techniques histoire et science Humaines. Association Artefact Journals open edition 4:347–355. https://doi.org/10.4000/artefact.523

    Article  Google Scholar 

  25. A.Farny MMelanderJ, W.Isberner J A (2003) Portland Cement: plaster. Stucco Manual. FIFTH Ed 68:13–28

    Google Scholar 

  26. Bensted J (2007) Application of the Methylene Bleu Test to Cement Raw materials. J Chem Technol Biotechnol Chem Technol 35(4):181–184. https://doi.org/10.1002/jctb.5040350405

    Article  Google Scholar 

  27. Mostafa NY, Brown PW (2005) Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta 435(2):162–167

    Article  CAS  Google Scholar 

  28. Yogendran Y, Langan BW, Haque MN, Ward MA (1987) Silica fume in high strength concrete. ACI J Mater 84(2):124–129

    CAS  Google Scholar 

  29. Fajun W, Grutzeck MW, Roy DM (1985) The retarding effects of fly ash upon the hydration of cement pastes: the first 24 hours. Cem Concr Res 15(1):174–184

    Article  CAS  Google Scholar 

  30. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256

    Article  CAS  Google Scholar 

  31. Mansoor SS, Hama SM, Hamdullah DN (2022) Effectiveness of replacing cement partially with waste brick powder in mortar. J King Saud Univ Eng Sci 1–9

  32. Demirel B (2010) The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete. Int J Phys Sci 5(9):1372–1380

    CAS  Google Scholar 

  33. Arel H (2016) Recyclability of waste marble in concrete production. J Clean Prod 131:179–188

    Article  Google Scholar 

  34. Elyamany HE, Abd Elmoaty M, Mohamed B (2014) Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete. Alex Eng J 53(2):295–307

    Article  Google Scholar 

  35. Hebhoub H, Aoun H, Belachia M, Houari H, Ghorbel E (2011) Use of waste marble aggregates in concrete. Constr Build Mater 25(3):1167–1171

    Article  Google Scholar 

  36. Khan MNA, Liaqat N, Ahmed I, Basit A, Umar M, Khan MA (2018) Effect of Brick Dust on strength and workability of concrete. IOP Conf Series: Materials Science and Engineering 414:012005. https://doi.org/10.1088/1757-899X/414/1/012005

    Article  Google Scholar 

  37. Silva RV, de Brito J, Dhir RK (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr Build Mater 105:400–415

    Article  CAS  Google Scholar 

  38. Ledesma EF, Jiménez JR, Ayuso J, Fernández JM, de Brito J (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production-Part-I: ceramic masonry waste. J Clean Prod 87:692–706

    Article  Google Scholar 

  39. Ferreira RLS, Anjos MAS, Nóbrega AKC, Pereira JES, Ledesma EF (2019) The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars. Constr Build Mater 208:601–612

    Article  Google Scholar 

  40. Roque S, Pederneiras CM, Farinha CB, de Brito J, Veiga R (2020) Concrete-based and mixed waste aggregates in rendering mortars. Materials 13:1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braga M, de Brito J, Veiga R (2014) Reduction of the cement content in mortars made with fine concrete aggregates. Mater Struct 47:171–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bizerte cements, Quality Laboratory, especially Mr Houcine TISS, for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halim Hammi.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejaoui, I., Hammi, H., Hammi, K.M. et al. Feasibility of the Demolition Waste Incorporation as an Additive to Cement: Comparative Study According to Current Standards. Chemistry Africa 7, 291–299 (2024). https://doi.org/10.1007/s42250-023-00724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00724-1

Keywords

Navigation