Log in

Inhibition of Plasmodium falciparum Fatty Acid Biosynthesis (FAS-II Pathway) by Natural Flavonoids: A Computer-Aided Drug Designing Approach

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Malaria is a fever sickness caused by Plasmodium parasites that are transmitted to humans by mosquito bites from infected female Anopheles mosquitos. Intracellular malaria parasites require lipids for the growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. Considering widening resistance of resistant Plasmodium parasites and thus, failing conventional antimalarial agents, we herein analyzed a set of 109 flavonoids in four protein structures including three homology models and one experimentally obtained crystal structure were conducted to obtain the probable conformations of ligands and their binding affinities. Our results suggested Volkensiflavone, Bilobetin and Sciadopitysin as lead candidates for further detailed analysis and testing their synthetic analogues for their in-vitro anti-malarial potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15:
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wiesner J, Ortmann R, Jomaa H, Schlitzer M (2003) New antimalarial drugs. Angew Chem Int Ed 42(43):5274–5293

    Article  CAS  Google Scholar 

  2. Cruz JN, Mali SN (2022) Antimalarial hemozoin inhibitors (β-hematin formation inhibition): latest updates. Combinat Chem High Throughput Screen. https://doi.org/10.2174/1386207325666220117145351

    Article  Google Scholar 

  3. Mali SN, Pandey A (2022) Hemozoin (beta-hematin) formation inhibitors; a promising target for the development of new antimalarials: current update and a future prospect. Combinat Chem High Throughput Screen. https://doi.org/10.2174/1386207325666210924104036

    Article  Google Scholar 

  4. Mali SN, Pandey A (2021) Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis. J Comput Biophys Chem 20(03):267–282

    Article  CAS  Google Scholar 

  5. Mali SN, Tambe S, Pratap AP, Cruz JN (2022) Molecular modeling approaches to investigate essential oils (volatile compounds) interacting with molecular targets. In: Santana de Oliveira M (ed) Essential oils. Springer, Cham. https://doi.org/10.1007/978-3-030-99476-1_18

    Chapter  Google Scholar 

  6. Mali SN, Pandey A (2022) Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part II). J Comput Biophys Chem. https://doi.org/10.1142/S2737416522500387

    Article  Google Scholar 

  7. Rodrigues T, Moreira R, Lopes F (2011) New hope in the fight against malaria? Future Med Chem 3(1):1–3

    Article  CAS  PubMed  Google Scholar 

  8. Narender T, Tanvir K, Rao MS, Srivastava K, Puri SK (2005) Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett 15(10):2453–2455

    Article  CAS  PubMed  Google Scholar 

  9. Ramalhete C, da Cruz FP, Mulhovo S, Sousa IJ, Fernandes MX, Prudêncio M, Ferreira MJU (2014) Dual-stage triterpenoids from an African medicinal plant targeting the malaria parasite. Bioorg Med Chem 22(15):3887–3890

    Article  CAS  PubMed  Google Scholar 

  10. Pérez B, Teixeira C, Gomes AS, Albuquerque IS, Gut J, Rosenthal PJ, Prudêncio M, Gomes P (2013) In vitro efficiency of 9-(N-cinnamoylbutyl) aminoacridines against blood-and liver-stage malaria parasites. Bioorg Med Chem Lett 23(3):610–613

    Article  PubMed  Google Scholar 

  11. World Health Organization (2020) WHO technical brief for countries preparing malaria funding requests for the Global Fund (2020–2022)

  12. Wellems TE, Panton LJ, Gluzman IY, Do Rosario VE, Gwadz RW, Walker-Jonah A, Krogstad DJ (1990) Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345(6272):253–255

    Article  CAS  PubMed  Google Scholar 

  13. Ross LS, Fidock DA (2019) Elucidating mechanisms of drug-resistant Plasmodium falciparum. Cell Host Microbe 26(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P (2022) Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 29(19):3326–3365

    Article  PubMed  Google Scholar 

  15. Hodoameda P, Duah-Quashie NO, Quashie NB (2022) Assessing the roles of molecular markers of antimalarial drug resistance and the host pharmacogenetics in drug-resistant malaria. J Trop Med

  16. Wright CW (2005) Traditional antimalarials and the development of novel antimalarial drugs. J Ethnopharmacol 100(1–2):67–71

    Article  CAS  PubMed  Google Scholar 

  17. Lopatriello A, Sore H, Habluetzel A, Parapini S, D’Alessandro S, Taramelli D, Taglialatela-Scafati O (2019) Identification of a potent and selective gametocytocidal antimalarial agent from the stem barks of Lophira lanceolata. Bioorg Chem 93:103321

    Article  CAS  PubMed  Google Scholar 

  18. Omar F, Tareq AM, Alqahtani AM, Dhama K, Sayeed MA, Emran TB, Simal-Gandara J (2021) Plant-based indole alkaloids: a comprehensive overview from a pharmacological perspective. Molecules 26(8):2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Awad HM, Boersma MG, Boeren S, van Bladeren PJ, Vervoort J, Rietjens IM (2001) Structure−activity study on the quinone/quinone methide chemistry of flavonoids. Chem Res Toxicol 14(4):398–408

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida K, Oyama KI, Kondo T (2012) Chemistry of flavonoids in color development. Recent Adv Polyphenol Res 3:99–129

    Article  CAS  Google Scholar 

  21. Harborne JB (1967) Comparative biochemistry of the flavonoids-IV: correlations between chemistry, pollen morphology and systematics in the family plumbaginaceae. Phytochemistry 6(10):1415–1428

    Article  CAS  Google Scholar 

  22. Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11(3):506–520

    Article  CAS  PubMed  Google Scholar 

  23. Schrader FC, Glinca S, Sattler JM, Dahse HM, Afanador GA, Prigge ST, Lanzer M, Mueller AK, Klebe G, Schlitzer M (2013) Novel type II fatty acid biosynthesis (FAS II) inhibitors as multistage antimalarial agents. ChemMedChem 8(3):442–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baschong W, Wittlin S, Inglis KA, Fairlamb AH, Croft SL, Kumar TR, Fidock DA, Brun R (2011) Triclosan is minimally effective in rodent malaria models. Nat Med 17(1):33–34

    Article  CAS  PubMed  Google Scholar 

  25. Tasdemir D (2006) Type II fatty acid biosynthesis, a new approach in antimalarial natural product discovery. Phytochem Rev 5(1):99–108

    Article  CAS  Google Scholar 

  26. Van Ooij C (2009) The fatty liver stage of malaria parasites. Nat Rev Microbiol 7(2):95–95

    Article  Google Scholar 

  27. Rudrapal M, Chetia D (2017) Plant flavonoids as potential source of future antimalarial leads. Syst Rev Pharm 8(1):13

    Article  CAS  Google Scholar 

  28. Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R (2006) Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 49(11):3345–3353

    Article  CAS  PubMed  Google Scholar 

  29. Jadhav BS, Yamgar RS, Kenny RS, Mali SN, Chaudhari HK, Mandewale MC (2020) Synthesis, in silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr Comput Aided Drug Des 16(5):511–522

    Article  CAS  PubMed  Google Scholar 

  30. Jejurkar VP, Mali SN, Kshatriya R, Chaudhari HK, Saha S (2019) Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives. ChemistrySelect 4(32):9470–9475

    Article  CAS  Google Scholar 

  31. Anuse DG, Mali SN, Thorat BR, Yamgar RS, Chaudhari HK (2020) Synthesis, SAR, in silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives. Curr Comput Aided Drug Des 16(6):802–813

    Article  CAS  PubMed  Google Scholar 

  32. Desale VJ, Mali SN, Chaudhari HK, Mali MC, Thorat BR, Yamgar RS (2020) Synthesis and anti-mycobacterium study on halo-substituted 2-aryl oxyacetohydrazones. Curr Comput Aided Drug Des 16(5):618–628

    Article  CAS  PubMed  Google Scholar 

  33. Thorat BR, Mali SN, Rani D, Yamgar RS (2021) Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents. Curr Comput Aided Drug Des 17(2):294–306

    Article  CAS  PubMed  Google Scholar 

  34. Kapale SS, Mali SN, Chaudhari HK (2019) Molecular modelling studies for 4-oxo-1, 4-dihydroquinoline-3-carboxamide derivatives as anticancer agents. Med Drug Discov 2:100008

    Article  Google Scholar 

  35. Mali SN, Pandey A (2022) Balanced QSAR and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against trypanosomiases. J Comput Biophys Chem 21(01):83–114

    Article  CAS  Google Scholar 

  36. Desale VJ, Mali SN, Thorat BR, Yamgar RS (2021) Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2). Curr Comput Aided Drug Des 17(4):493–503

    Article  CAS  PubMed  Google Scholar 

  37. Kshatriya R, Shelke P, Mali S, Yashwantrao G, Pratap A, Saha S (2021) Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs). Chem Sel 6(24):6230–6239

    CAS  Google Scholar 

  38. Mali SN, Pandey A (2021) Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J Indian Chem Soc 98(6):100082

    Article  CAS  Google Scholar 

  39. Mali SN, Pandey A, Thorat BR, Lai CH (2022) Multiple 3D-and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct Chem 33(3):679–694

    Article  CAS  Google Scholar 

  40. Nagre DT, Mali SN, Thorat BR, Thorat SA, Chopade AR, Farooqui M, Agrawal B (2021) Synthesis, in-silico potential enzymatic target predictions, pharmacokinetics, toxicity, anti-microbial and anti-inflammatory studies of bis-(2-methylindolyl) methane derivatives. Curr Enzym Inhib 17(2):127–143

    Article  CAS  Google Scholar 

  41. Ghosh S, Mali SN, Bhowmick DN, Pratap AP (2021) Neem oil as natural pesticide: Pseudo ternary diagram and computational study. J Indian Chem Soc 98(7):100088

    Article  CAS  Google Scholar 

  42. Bhosale D, Mali SN, Thorat BR, Wavhal SS, Bhagat DS, Borade RM (2022) Synthesis, molecular docking and in-vitro antimycobacterial studies on N’-arylidene-4-nitrobenzohydrazides. Recent Adv Anti-Infect Drug Discov 2022:17. https://doi.org/10.2174/1570193X19666220531154544

    Article  Google Scholar 

  43. Nagre DT, Thorat BR, Mali SN, Farooqui M, Agrawal B (2021) Experimental and computational insights into bis-indolylmethane derivatives as potent antimicrobial agents inhibiting 2, 2-dialkylglycine decarboxylase. Curr Enzym Inhib 17(3):204–216

    Article  Google Scholar 

  44. Thorat Bapu R, Mali Suraj N, Wagh Rahul R, Yamgar Ramesh S (2022) Synthesis, molecular docking, antioxidant, anti-TB, and potent MCF-7 anticancer studies of novel aryl-carbohydrazide analogues. Curr Comput Aided Drug Des. https://doi.org/10.2174/1573409918666220610162158

    Article  Google Scholar 

  45. Lim SS, Kim HS, Lee DU (2007) In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc 28(12):2495–2497

    Article  CAS  Google Scholar 

  46. Oliveira FQ, Andrade-Neto V, Krettli AU, Brandão MGL (2004) New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 93(1):39–42

    Article  CAS  PubMed  Google Scholar 

  47. de Monbrison F, Maitrejean M, Latour C, Bugnazet F, Peyron F, Barron D, Picot S (2006) In vitro antimalarial activity of flavonoid derivatives dehydrosilybin and 8-(1; 1)-DMA-kaempferide. Acta Trop 97(1):102–107

    Article  PubMed  Google Scholar 

  48. Studio D (2008) Discovery studio. Accelrys [2.1]

  49. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac240

    Article  PubMed  PubMed Central  Google Scholar 

  50. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  PubMed  Google Scholar 

  52. Studer G, Rempfer C, Waterhouse AM, Gumienny G, Haas J, Schwede T (2020) QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36:1765–1771

    Article  CAS  PubMed  Google Scholar 

  53. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K (2007) Ramachandran plot on the web (2.0). Protein Peptide Lett 14(7):669–671

    Article  CAS  Google Scholar 

  54. Land H, Humble MS (2018) YASARA: a tool to obtain structural guidance in biocatalytic investigations. Protein engineering. Springer, Berlin, pp 43–67

    Chapter  Google Scholar 

  55. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl 2):W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  56. SAVESv6.0—structure validation server, UCLA-DOE LAB. https://saves.mbi.ucla.edu/

  57. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27(1):293–315

    Article  CAS  PubMed  Google Scholar 

  58. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. ACD/ChemSketch (2022) Version 2021.2.1. Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com

  60. Hanwell MD et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 4(1):1–17

    Article  Google Scholar 

  61. O’Boyle NM et al (2011) Open Babel: an open chemical toolbox. J Cheminf 3(1):1–14

    Google Scholar 

  62. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  64. Trajtenberg F, Altabe S, Larrieux N, Ficarra F, de Mendoza D, Buschiazzo A, Schujman GE (2014) Structural insights into bacterial resistance to cerulenin. FEBS J 281(10):2324–2338

    Article  CAS  PubMed  Google Scholar 

  65. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  66. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35(6):1067–1069

    Article  CAS  PubMed  Google Scholar 

  67. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  68. Du J, Sun H, ** L, Li J, Yang Y, Liu H, Yao X (2011) Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM–GBSA calculation. J Comput Chem 32(13):2800–2809

    Article  CAS  PubMed  Google Scholar 

  69. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36(13):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  CAS  PubMed  Google Scholar 

  72. Baell JB, Nissink JWM (2018) Seven year itch: pan-assay interference compounds (PAINS) in 2017 utility and limitations. ACS Chem Biol 13(1):36–44

    Article  CAS  PubMed  Google Scholar 

  73. Dong YW, Liao ML, Meng XL, Somero GN (2018) Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc Natl Acad Sci 115(6):1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Desmond M (2022) Schrodinger. LLC, NY

    Google Scholar 

Download references

Acknowledgements

Authors of this article are thankful to Dept. Of Pharmaceutical Sciences, Birla Institute of Technology, Mesra for their facility and academic support. SM also wish to thank the BIT, Mesra for the provision of IRF for year 2022, session SP.22.

Funding

None to report.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript contributed equally.

Corresponding authors

Correspondence to Anima Pandey or Suraj N. Mali.

Ethics declarations

Conflict of Interest

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3124 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Shyamal, S.S., Shrivastava, R. et al. Inhibition of Plasmodium falciparum Fatty Acid Biosynthesis (FAS-II Pathway) by Natural Flavonoids: A Computer-Aided Drug Designing Approach. Chemistry Africa 5, 1469–1491 (2022). https://doi.org/10.1007/s42250-022-00449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00449-7

Keywords

Navigation