Log in

Achieving structural, photoluminescence, temperature dependent photoluminescence and thermo-luminescence properties of SrAl2O4:Dy3+Eu3+ phosphor for WLED application

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

We present the SrAl2O4:Dy, SrAl2O4:Eu, & SrAl2O4:Dy3+Eu3+ phosphors and these samples were prepared by using the urea fuel combustion method at 550 °C. X-ray diffraction pattern indicates monoclinic structure and good crystallinity, Result of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectra is exhibited synthesized compound were pure and overall good morphology. By the Brunauer–Emmett–Teller (BET) surface area analyzer, surface area was found 30.462 m2/g of SrAl2O4:Dy0.03Eu0.04. homogeneity, rotational, and vibrational properties were also investigated by FTIR and Raman spectroscopy. By the help of UV–visible spectroscopy band gap (~ 5 eV) was calculated. The photoluminescence properties were studied of SrAl2O4:Dyx, SrAl2O4:Eux, & SrAl2O4:Dy0.03Eux (x = 0.01 to 0.05) samples. In this order, we have found best SrAl2O4:Dy0.03Eu0.04 photoluminescent sample rather than other samples. The CIE-1931 color coordinate (0.3103, 0.3035), CCT (6914 K), CRI (94), and color purity (89.1%) were calculated of the SrAl2O4:Dy0.03Eu0.04 phosphor. Temperature-dependent photoluminescence spectra were measured of SrAl2O4:Dy0.03Eu0.04 phosphor by 395 nm excitation wavelength. Thermoluminescence glow curve were measured of synthesized phosphors and it is exposed to UV radiation (254 nm). Thermo-luminescence trap** parameters, activation energy and average frequency factor were calculated by Chens peak shape method. The obtained SrAl2O4Eu0.05Dy0.04 is fine phosphor and it has good PL, TL properties due to perfect do** concentration of Dy and Eu, higher elemental purity and perfect crystalline morphology. Therefore, SrAl2O4-based phosphor activated by Dy and Eu metals may be used for future prospective WLEDs applications.

Highlights

  1. 1.

    First time SrAl2O4:Dy3 + Eu3 + nano phosphor synthesis by urea fuel combustion route.

  2. 2.

    Crystallinity, Particle Size, morphology, and Surface area estimated by XRD, SEM, and BET.

  3. 3.

    Band gap of the SrAl2O4:Dy0.03Eu0.04 phosphor was found ~ 5 eV electron volt.

  4. 4.

    PL, Temperature dependent PL spectra, and Long-lasting decay curve were also analysed.

  5. 5.

    Glow peak parameter, TL activation energy, and frequency factor were calculated by Chens-equation.

AbstractSection Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Data availability

The authors states that analysed and relevant data of synthesized materials, which are including and described in the manuscript will be freely available to researchers and scientists who are working purpose of research and social welfare.

References

  1. Y.M. Huanga, Q.L. Ma, B.G. Zhai, Luminescent properties of Eu2+, Eu3+ and Dy3+ coactivated SrAl2O4 nanocrystals. Key Eng. Mater. 538, 15–21 (2013). https://doi.org/10.4028/www.scientific.net/KEM.538.15

    Article  CAS  Google Scholar 

  2. Y. Zheng, D. Chen, Luminescence studies on Al4B2O9:Eu2+ phosphor crystals. Lumin. 26(6), 481–485 (2011). https://doi.org/10.1002/bio.1256

    Article  CAS  Google Scholar 

  3. N. Salah, S.S. Habib, Z.H. Khan, Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles. J. Fluoresc.Fluoresc. 20, 1009–1015 (2010). https://doi.org/10.1007/s10895-010-0648-7

    Article  CAS  Google Scholar 

  4. P. Dorenbos, Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104(4), 239–260 (2003). https://doi.org/10.1016/S0022-2313(03)00078-4

    Article  CAS  Google Scholar 

  5. A.K. Verma, A. Verma, G.V. Bramhe, Shifting and enhanced photoluminescence performance of the Sr1-xEuxMgAl10O17 phosphor. J. Alloys Compd. 774, 1168–1180 (2019). https://doi.org/10.1016/j.jallcom.2018.09.166

    Article  CAS  Google Scholar 

  6. S.K. Sharma, S.S. Pitate, M.M. Malik, R.N. Dubey, M.S. Qureshi, Synthesis and detailed kinetic analysis of Sr4Al14O25:Eu2+ phosphors under black light irradiation. Radiat. Eff. Defects Solids. Eff. Defects Solids. 163(9), 767–777 (2008). https://doi.org/10.1080/10420150701772984

    Article  CAS  Google Scholar 

  7. E. Cordoncillo, B. Julian-Lopez, M. Martínez, M. Luisa Sanjuán, Purificación Escribano, New insights in the structure-luminescence relationship of Eu:SrAl2O4. J. Alloys Compd. 484, 693–697 (2009). https://doi.org/10.1016/j.jallcom.2009.05.018

    Article  CAS  Google Scholar 

  8. T.R.N. Kutty, R. Jagannathan, R.P. Rao, Luminescence of Eu2+ in strontium aluminates prepared by the hydrothermal method. Mater. Res. Bull. 25(11), 1355–1362 (1990). https://doi.org/10.1016/0025-5408(90)90217-P

    Article  CAS  Google Scholar 

  9. H. Lin, X.R. Liu, E.Y.B. Pun, Sensitized luminescence and energy transfer in Ce3+ and Eu2+ codoped calcium magnesium chlorosilicate. Opt. Mater. 18(4), 397–401 (2002). https://doi.org/10.1016/S0925-3467(01)00179-3

    Article  Google Scholar 

  10. P. Zhang, M.-X. Xu, Z.-T. Zheng, B. Sun, Y.-H. Zhang, Microwave synthesis and characterization of new red long afterglow phosphor Sr3Al2O6:Eu. Trans. Nonferrous Metals Soc. China 16, s423–s425 (2006). https://doi.org/10.1016/S1003-6326(06)60225-2

    Article  Google Scholar 

  11. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, Anew long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143(8), 2670–2673 (1996). https://doi.org/10.1149/1.1837067

    Article  CAS  Google Scholar 

  12. B. Cheng, Z. Zhang, Z. Han, Y. **ao, S. Lei, SrAl2O4:Eu2+, Dy3+ nanobelts: synthesis by combustion and properties of long-persistent phosphorescence. J. Mater. Res. 26(17), 2311–2315 (2011). https://doi.org/10.1557/jmr.2011.94

    Article  CAS  Google Scholar 

  13. P. Gao, Q. Liu, J. Wu, J. **g, W. Zhang, J. Zhang, T. Jiang, J. Wang, Y. Qi, Z. Li, Enhanced Fluorescence Characteristics of SrAl2O4: Eu2+, Dy3+ Phosphor by Co-Do** Gd3+ and Anti-Counterfeiting Application. Nanomaterials 13, 2034 (2023). https://doi.org/10.3390/nano13142034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. F. Yoshimura, K. Nakamura, F. Wakai, M. Hara, M. Yoshimoto, O. Odawara, H. Wada, Preparation of long-after glow colloidal solution of Sr2MgSi2O7:Eu2+, Dy3+ by laser ablation in liquid. Appl. Surf. Sci. 257(6), 2170–2175 (2011). https://doi.org/10.1016/j.apsusc.2010.09.067

    Article  CAS  Google Scholar 

  15. A. Review, K. V. Eeckhout, P. F. Smet. D. Poelman, Persistent Luminescence In Eu2+-Doped Compound. Material 3, 2536–2566 (2010). https://doi.org/10.3390/ma3042536

    Article  CAS  Google Scholar 

  16. T. Delgado, J. Afshani, H. Hagemann, Spectroscopic Study of a Single Crystal of SrAl2O4:Eu2+Dy3+. J. Phys. Chem. C 123(14), 8607–8613 (2019). https://doi.org/10.1021/acs.jpcc.8b12568

    Article  CAS  Google Scholar 

  17. G.V. Bramhe, S.J. Dhoble, S.V. Moharil, Luminescence of Ce3+ ion n aluminate-based phosphors for scintillators. Radiat. Eff. Defects Solids 160–6, 219–224 (2005). https://doi.org/10.1080/10420150500275601

    Article  CAS  Google Scholar 

  18. A. Deshmukh, S.J. Dhoble, N.S. Dhoble, Optical properties of MAl12O19: Eu (M= Ca, Ba, Sr)nano-phosphors. Adv. Mat. Let. 2(1), 38–42 (2011). https://doi.org/10.5185/amlett.2010.10171

    Article  CAS  Google Scholar 

  19. S.H.M. Poort, W. Janssen, G. Blasse, optical properties of Eu2+ activated orthosilicate and orthophosphate. J. Alloys Compd. 260, 93–97 (1997). https://doi.org/10.1016/S0925-8388(97)00140-0

    Article  CAS  Google Scholar 

  20. J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, white light emitting diodes of GaN based Sr2SiO4: Eu and the luminescent properties. Appl. Phys. Let. 82, 683–685 (2003). https://doi.org/10.1063/1.1544055

    Article  CAS  Google Scholar 

  21. V. Singh, T.K. Gundu Rao, J.J. Jhu, Preparation luminescence and defect studies of Eu2+-activated strontium hexa- aluminates phosphors prepared via combustion method. J. Solid State Chem. 179, 2589–2594 (2006). https://doi.org/10.1016/j.jssc.2006.04.053

    Article  CAS  Google Scholar 

  22. V. Abbruscato, Optical and Electrical Properties of SrAl2 O 4: Eu2+. J. electrochem. Soc. 118, 930 (1971). https://doi.org/10.1149/1.2408226

    Article  CAS  Google Scholar 

  23. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A New Long Phosphorescent Phosphor with High Brightness, SrAl2O 4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996). https://doi.org/10.1149/1.1837067

    Article  CAS  Google Scholar 

  24. O. Arellano Tanori, R. Melendrez, M. Pedroza-Montero, B. Castaneda, V. Chernov, W.M. Yen, M. Barboza-Flores, Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphors. J. Lumin.Lumin. 128(1), 173–184 (2008). https://doi.org/10.1016/j.jlumin.2007.07.006

    Article  CAS  Google Scholar 

  25. D. Haiyan, L. Gengshen, S. Jiayue, Preparation of non- grinding long after glow SrAl2O4:Eu2+, Dy3+ material by microwave combustion method. J. Rare Earths 25, 19–22 (2007). https://doi.org/10.1016/S1002-0721(07)60037-4

    Article  Google Scholar 

  26. B.P. Kore, N.S. Dhoble, S.J. Dhoble, Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate. J. Lumin. 150, 59–67 (2014). https://doi.org/10.1016/j.jlumin.2014.01.057

    Article  CAS  Google Scholar 

  27. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, A.S. Jain, Investigation of photoluminescence, thermoluminescence, and energy transfer mechanism in Ce/Dy co-doped Sr2Al2SiO7. Mater. Sci. Semicond. Process. 159, 107396 (2023). https://doi.org/10.1016/j.mssp.2023.107396

    Article  CAS  Google Scholar 

  28. T. Nakamura, K. Kaiya, N. Takahashi, T. Matsuzawa, M. Ohta, C.C. Rowlands, G.M. Smith, P.C. Riedi, High Frequency EPR Investigations of Gadolinium (III)-Doped Strontium Aluminates. Phys. Chem. Chem. Phys. 3, 1721–1723 (2001). https://doi.org/10.1039/B008251L

    Article  CAS  Google Scholar 

  29. G.I. Akmehmet, S. Sturm, L. Bocher, M. Kociak, B. Ambrozic, C.W. Ow-Yang, Structure and Luminescence in Long Persistence Eu, Dy, and B Codoped Strontium Aluminate Phosphors: The Boron Effect. J. Am. Ceram. Soc. 99(6), 2175–2180 (2016). https://doi.org/10.1111/jace.14188

    Article  CAS  Google Scholar 

  30. H.Y. Amada, K. Nishikubo, C.N. Xu, Determination of Eu Sites In Highly Europium Doped Strontium Aluminate Phosphors Using Synchrotron X-Ray Powder Diffraction Analysis. J. Electrochem. Soc.Electrochem. Soc. 155(7), FI39–FI44 (2008). https://doi.org/10.1149/1.2907407

    Article  CAS  Google Scholar 

  31. X. Lu, W. Shu, Q. Fong, Q. Yu, X. ** ions in persistent luminescence of SrAl2O4:Eu2+RE3+ Phosphors. Glass Phys. Chem.Chem 33, 62–67 (2007). https://doi.org/10.1134/S1087659607010099

    Article  CAS  Google Scholar 

  32. F. Yu, Y. Yang, X. Su, C. Mi, H.J. Seo, Novel long persistent luminescence phosphors Yb2+ co-doped MAl2O4 (M= Ca, Sr). Opt. Mater. Express 5(3), 585–595 (2015). https://doi.org/10.1364/OME.5.000585

    Article  CAS  Google Scholar 

  33. R. Melendre, O. Arellano-Tarnori, M. Pedroza-Montera, W.M. Yen, M. Barbora-flores, Temperature dependence of persistent luminescence in β-irradiated SrAl2O4:Eu2+, Dy3+ phosphors. J. Lumin. 129(7), 679–685 (2009). https://doi.org/10.1016/j.jlumin.2009.01.013

    Article  CAS  Google Scholar 

  34. P. Jha, B.P. Chandra, Pulse induced mechano-luminescence of ultra violet irradiated SrAl2O4:Eu. Dy phosphors. Radiat. Eff. Defects Solids. 169(8), 655–668 (2014). https://doi.org/10.1080/10420150.2014.925896

    Article  CAS  Google Scholar 

  35. M. Ayvacikli, A. Ege, N. Can, Radio-luminescence of SrAl2O4:Ln3+ (Ln- Eu, Sm, Dy) phosphors ceramic. Opt. Mater. 34, 138–142 (2011). https://doi.org/10.1016/j.optmat.2011.07.023

    Article  CAS  Google Scholar 

  36. D. Valiev, T. Han, V. Vaganov, S. Stepanov, The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor. J. Phys. Chem. SolidsChem Solids 116, 1–6 (2018). https://doi.org/10.1016/j.jpcs.2018.01.007

    Article  CAS  Google Scholar 

  37. H. Terraschke, M. Suta, M. Adlung, S. Mammadova, N. Musayeva, R. Jabbarov, M. Nazarov, C. Wickleder, SrAl2O4:Eu2+(, Dy3+) Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical Properties. J. Spectrosc. 2015, 541958 (2015). https://doi.org/10.1155/2015/541958

    Article  CAS  Google Scholar 

  38. R.E. Rojar Hernandez, M.A. Rodriguez, J.F. Fernandez, Role of the oxidizing agent to complete the synthesis of strontium of aluminate-based phosphors by the combustion method. RSC Adv. 5, 3104–3112 (2015). https://doi.org/10.1039/C4RA10460A

    Article  CAS  Google Scholar 

  39. C. Liu, Y. Wang, Y. Hu, R. Chen, F. Liao, Adjusting luminescence properties of Sr1-xCaxAl2O4 Eu2+, Dy3+ phosphors by Sr/Ca ratio. J. Alloys Compd. 470, 473–476 (2009). https://doi.org/10.1016/j.jallcom.2008.03.001

    Article  CAS  Google Scholar 

  40. R. Zhang, G. Han, L. Zhang, B. Yang, Gel combustion synthesis and luminescence properties of nano particles of monoclinic SrAl2O4:Eu2+, Dy3+. Mater. Chem. Phys. 113, 255–259 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.084

    Article  CAS  Google Scholar 

  41. K.A. Gedekar, S.P. Wankhede, S.V. Moharil, R.M. Belekar, d–f luminescence of Ce3+ and Eu2+ ions in BaAl2O4, SrAl2O4 and CaAl2O4 Phosphors. J. Adv. Ceram. 6(4), 341–350 (2017). https://doi.org/10.1007/s40145-017-0246-0

    Article  CAS  Google Scholar 

  42. D.S. Kshatri, S. Mishra, A. Khare, Synthesis or nano-crystalline SrAl2O4:Eu2+, Dy3+ phosphors by combustion technique and luminescent properties. Int. J. Adv. Engg. Res. Studies 6(9), 266–270 (2015)

    Google Scholar 

  43. A. Kato, A. Ohta, T. Honda, S. Abe, T sasaki, T. Kikuchi, N. Harada, In-liquid process by atmospheric pressure plasma for reduction of SrAl2O4:Eu phosphor. IOP Conf. Ser.: Mater. Sci. Eng. 21, 012003 (2011). https://doi.org/10.1088/1757-899X/21/1/012003

  44. B.Y. Geng, J.Z. Ma, F.M. Zhan, A solution chemistry approach for one- dimensional needle- like SrAl2O4 nanostructures with Ln (Ce3+, Eu2+, and Tb3+) as activators/dopant. J. Alloys Compd. 473, 530–533 (2009). https://doi.org/10.1016/j.jallcom.2008.06.014

    Article  CAS  Google Scholar 

  45. D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu2+- activated alkaline earth aluminate phosphors. Displays 19(4), 197–203 (1999). https://doi.org/10.1016/S0141-9382(98)00050-X

    Article  CAS  Google Scholar 

  46. E.S. Kim, H.D. Jang, S.K. Kim, H.B. Lee, Photocurrent characteristics of Sr1-xCaxAl2O4 Co-doped with Eu2+ and Ni2+. Integr. Ferroelectr. 115, 1–8 (2010). https://doi.org/10.1080/10584587.2010.488529

    Article  CAS  Google Scholar 

  47. C.H. Lu, S.Y. Chen, C.H. Hsu, Nano sized strontium aluminate phosphors prepared via a reverse micro emulsion route. Mater. Sci. Eng. B 140, 218–221 (2007). https://doi.org/10.1016/j.mseb.2007.05.001

    Article  CAS  Google Scholar 

  48. V.B. Pawadea, H.C. Swartz, S.J. Dhoble, Review of Rare Earth Activated Blue Emission Phosphors Prepared by Combustion Synthesis. Renew. Sust. Energ. Rev. 52, 596–612 (2015). https://doi.org/10.1016/j.rser.2015.07.170

    Article  CAS  Google Scholar 

  49. S. Ekambaram, K.C. Patil, M. Maaza, Synthesis of Lamp Phosphors: Facile Combustion Approach. J. Alloys Compd. 393, 81–92 (2005). https://doi.org/10.1016/j.jallcom.2004.10.015

    Article  CAS  Google Scholar 

  50. J.F.C. Carreira, N. Ben Sedrine, T. Monteiro, L. Rino, YAG:Dy-Based single white light emitting phosphor produced by solution combustion synthesis. J. Lumin.Lumin. 183, 251–258 (2017). https://doi.org/10.1016/j.jlumin.2016.11.017

    Article  CAS  Google Scholar 

  51. Eux nano phosphor, A. K. Verma, S.K. Pathak, A. Verma, G.V. Bramhe, I.P Sahu, Tuning of luminescent properties of Zn1-xMgAl10O17. J. Alloys Compd. 764, 1021–1032 (2018). https://doi.org/10.1016/j.jallcom.2018.06.023

    Article  CAS  Google Scholar 

  52. Eux phosphor synthesis by combustion route, A. K. Verma, A. Verma, G.V. Bramhe, I.P Sahu, Optical studies of the Ba1-xMgAl10O17. J. Alloys Compd. 769, 831–842 (2018). https://doi.org/10.1016/j.jallcom.2018.07.371

    Article  CAS  Google Scholar 

  53. A.K. Verma, Ashish Verma (2019): Synthesis, characterization, mechano-luminescence, thermoluminescence, and antibacterial properties of SrMgAl10O17: Eu phosphor. J. Alloys Compd. 802, 394–408 (2019). https://doi.org/10.1016/j.jallcom.2019.06.209

    Article  CAS  Google Scholar 

  54. A.K. Verma, D.P. Bisen, N. Brahme, I.P. Sahu, A.K. Singh, Yttrium aluminum garnet based novel and advanced phosphor synthesized by combustion route activate by Dy, Eu, and Tb rare earth metals. J. Mater. Sci. Mater. Electron. 34, 644 (2023). https://doi.org/10.1007/s10854-023-10022-8

    Article  CAS  Google Scholar 

  55. S. Yoon, J. Bierwagen, M. Trottmann, B. Walfort, N. Gartmann, A. Weidenkaff, H. Hagemann, S. Pokrant, The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl2O4:Eu2+. J. Lumin. 167, 126–131 (2015). https://doi.org/10.1016/j.jlumin.2015.06.021

    Article  CAS  Google Scholar 

  56. L.K. Kurihara, S.L. Suib, Sol-gel synthesis of ternary metal oxides. 1. Synthesis and characterization of MAl2O4 (M = Mg, Ni, Co, Cu, Fe, Zn, Mn, Cd, Ca, Hg, Sr, and Ba) and lead aluminium oxide (Pb2Al2O5). Chem. Mater 5 (5), 609–613 (1993). https://doi.org/10.1021/cm00029a006

  57. B.M. Mothudi, O.M. Ntwaeaborwa, J.R. Botha, H.C. Swartz, Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 5000C. Physica B 404, 4440–4444 (2009). https://doi.org/10.1016/j.physb.2009.09.047

    Article  CAS  Google Scholar 

  58. D. Dutczak, T. Justel, C. Ronda, A. Meijerink, Eu2+ luminescence in strontium aluminates. Phys. Chem. Chem. Phys. 17, 15236–15249 (2015). https://doi.org/10.1039/c5cp01095k

    Article  CAS  PubMed  Google Scholar 

  59. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Combustion synthesis and photoluminescence of SrAl2O4:Eu. Dy phosphor nano-particles. Mater. Lett. 58, 352–356 (2004). https://doi.org/10.1016/S0167-577X(03)00499-3

    Article  CAS  Google Scholar 

  60. Y. Lin, Z. Zhang, F. Zhang, Z. Tang, Q. Chen, Preparation of the ultrafine SrAl2O4:Eu, Dy needle-like phosphor and its optical properties. Mater. Chem. Phys. 65, 103–106 (2000). https://doi.org/10.1016/S0254-0584(00)00222-4

    Article  CAS  Google Scholar 

  61. Z. Qiu, Y. Zhou, M. Lu, A. Zhang, Q. Ma, Combustion synthesis of long-persistent luminescent MAl2O4: Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Mater. 55(8), 2615–2620 (2007). https://doi.org/10.1016/j.actamat.2006.12.018

    Article  CAS  Google Scholar 

  62. J.C. Wurst, J.A. Nelson, Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55(2), 109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x

    Article  CAS  Google Scholar 

  63. K.E. Foka, F.B. Dejene, H.C. Swart, Photoluminescence properties of Ce3+-doped SrAl2O4 prepared using the solution combustion method. Phys. B Condense. Matter 439, 177–180 (2014). https://doi.org/10.1016/j.physb.2013.11.031

    Article  CAS  Google Scholar 

  64. S. Hamdan, R. Hussin, M.A. Salim, M.S. Husin, D.N.F. Abdul Halim, M.S. Abdullah, Morphology and composition of strontium calcium aluminate matrix doped with Dy3+. Mater. Sci. Technol. 27, 232–234 (2011). https://doi.org/10.1179/026708310X12635619988104

    Article  CAS  Google Scholar 

  65. K. Liang, Y. Qi, and C. Lu, Temperature-dependent Raman scattering in ferroelectric Bi4−xNdxTi3O12(x = 0, 0.5, 0.85) single crystals. J Raman Spectrosc . 40 (12), 2088–2091 (2009). https://doi.org/10.1002/jrs.2376

  66. P. Pei, K. Liu, Z. Ju, R. Wei, W. Liu, Achieving mechano-upconversion-downshifting-afterglow multimodal luminescence in Pr3+/Er3+ coactivated Ba2Ga2GeO7 for multidimensional anticounterfeiting. J. Mater. Chem. C 10, 5240–5248 (2022). https://doi.org/10.1039/D2TC00166G

    Article  CAS  Google Scholar 

  67. D. Ahirwar, M. Bano, I. Khan, S.S. Gound, M.U.D. Sheikh, R. Mondal, F. Khan, Facile synthesis of macroporous Ag and CuO monoliths as an efficient nonenzymatic electrochemical sensor and antimicrobial agent. J. Solid State Chem. 273, 233–242 (2019). https://doi.org/10.1016/j.jssc.2019.03.002

    Article  CAS  Google Scholar 

  68. M. Bano, I. Khan, D. Ahirwar, F. Khan, Synthesis of quaternary nanocomposites for catalytic reduction of Cr(VI) to Cr(III) and its sensing. React. Funct. Polym. 150, 104545 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104545

    Article  CAS  Google Scholar 

  69. T. Delgado, J. Afshani, H. Hagemann, Spectroscopic Study of a Single Crystal of SrAl2O4:Eu2+:Dy3+. J. Phys. Chem. C 123(14), 8607–8613 (2019). https://doi.org/10.1021/acs.jpcc.8b12568

    Article  CAS  Google Scholar 

  70. B. Devakumar, P. Halappa, C. Shivakumara, Dy3+/Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications. Dyes Pigm. 137, 244–255 (2017). https://doi.org/10.1016/j.dyepig.2016.10.016

    Article  CAS  Google Scholar 

  71. G.B. Nair, H.C. Swart, S.J. Dhoble, A Review on the Advancements in Phosphor converted Light emitting diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Prog. Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  CAS  Google Scholar 

  72. U.H. Kaynar, S.C. Kaynar, Y. Alajlani, M. Ayvacikli, E. Karali, Y. Karabulut, S. Akca, T. Karali, N. Can, Eu3+ and Dy3+ doped La2MoO6 and La2Mo2O9 phosphors: Synthesis and luminescence properties. Mater. Res. Bull. 123, 110723 (2020). https://doi.org/10.1016/j.materresbull.2019.110723

    Article  CAS  Google Scholar 

  73. A. K. Verma, D.P. Bisen, N. Brahme, I. P. Sahu, P. Barik, Long Lasting Persistent Photo-Luminescence Properties of EuxM1-xMgAl10O17(M = Ba, Ca, Sr, Zn) Phosphors. J. Phys.: Conf. Ser. 2576, 012011 (2023).https://doi.org/10.1088/1742-6596/2576/1/012011

  74. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  75. Y.N. Ahn, K.D. Kim, G. Anoop, G.S. Kim, J.S. Yoo, Design of highly efficient phosphor converted white light-emitting diodes with color rendering indices (R1–R15) ≥ 95 for artificial lighting. Sci. Rep. 9, 16848 (2019). https://doi.org/10.1038/s41598-019-53269-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A. Ghosh, P. Selvaraj, S. Sundaram, T.K. Mallick, The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol. Energy 163, 537–544 (2018). https://doi.org/10.1016/j.solener.2018.02.021

    Article  CAS  Google Scholar 

  77. M. Inokuti, F. Hirayama, Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence. J. Chem. Phys. 43, 1978 (1965). https://doi.org/10.1063/1.1697063

    Article  CAS  Google Scholar 

  78. P. Dharmaiah, C.S. Dwaraka Viswanath, Ch. Basavapoornima, K. Venkata Krishnaiaha, C. K. Jayasankara, S. J. Hong, Luminescence and energy transfer in Dy3+/Tb3+ co-doped transparent oxyfluorosilicate glass-ceramics for green emitting applications. Mater. Res. Bull. 83, 507–514 (2016). https://doi.org/10.1016/j.materresbull.2016.06.044

  79. H. Li, Y. Liang, S. Liu, W. Zhang, Y. Bi, Y. Gong, Y. Chen, W. Lei, Highly efficient green-emitting phosphor Sr4Al14O25:Ce,Tb with low thermal quenching and wide color gamut upon UV-light excitation for backlighting display applications. J. Mater. Chem. C 9, 2569–2581 (2021). https://doi.org/10.1039/d0tc04618c

  80. Y. Wei, L. Cao, L. Lv, G. Li, J. Hao, J. Gao, C. Su, C. C. Lin, H. S. Jang, P. Dang, J. Lin, Highly Efficient Blue Emission and Superior Thermal Stability of BaAl12O19:Eu2+ Phosphors based on Highly Symmetric Crystal Structure. Chem. Mater. 30, 2389-2399 (2018). https://doi.org/10.1021/acs.chemmater.8b00464

  81. L. Wang, M. Xu, H. Zhaoa, D. Jia, Luminescence, energy transfer and tunable color of Ce3+, Dy3+/Tb3+ doped BaZn2(PO4)2 phosphors. New J. Chem. 40, 3086-3053 (2016). https://doi.org/10.1039/C5NJ03148F

  82. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, E. Chandrawanshi, Analysis of thermoluminescence glow curve and evaluation of trap** parameters of cerium activated M2Al2SiO7 (M= Ca and Sr) phosphor for TLD application. Mater. Chem Phys. 287, 126273 (2022). https://doi.org/10.1016/j.matchemphys.2022.126273

  83. R. Paikaray, T. Badapanda, H. Mohapatra, T. Richhariya, S.N. Tripathy, Investigation of structural, photoluminescence, and thermoluminescence properties of Praseodymium doped CaWO4 phosphor. Mater Today Commun. 31, 103802 (2022). https://doi.org/10.1016/j.mtcomm.2022.103802

  84. S. Chand, R. Mehra, V. Chopra, Recent advancements in calcium-based phosphate materials for luminescence applications. J. Lumin. 252, 119383 (2022). https://doi.org/10.1016/j.jlumin.2022.119383

  85. M.S.A. Fadzil, N.M. Noor, N. Tamchek, N.M. Ung, N. Abdullah, M.T. Dolah, D.A. Bradley, A cross-validation study of Ge-doped silica optical fibres and TLD-100 systems for high energy photon dosimetry audit under non-reference conditions. Radiat. Phys. Chem. 200, 110232 (2022). https://doi.org/10.1016/j.radphyschem.2022.110232

  86. P. Kaur, A. Kaur, S. Singh, L. Singh, Investigation on structural and thermoluminescence properties of Ho3+ doped SrB4O7 phosphor for dosimetry applications. J. Mol. Struct. 1248, 131500 (2022). https://doi.org/10.1016/j.molstruc.2021.131500

  87. S.K. Sao, N. Brahme, D.P. Bisen, G. Tiwari, S.J. Dhoble, Mechanoluminescence, thermoluminescence and photoluminescence studies of UV/γ-irradiated Ba2MgSi2O7:Dy3+ phosphors. J Lumin. 180, 306-314 (2016). https://doi.org/10.1016/j.jlumin.2016.08.052

  88. McKeever, Stephen WS, Thermoluminescence of Solid, Vol. 3, Cambridge University Press, (1985)

Download references

Acknowledgements

Corresponding author (Aksh Kumar Verma) is grateful to UGC-DSKPDF, Govt. of India for the post-doctoral fellowship (No. F.4-2/2006(BSR)/PH/20-21/0067).

Author information

Authors and Affiliations

Authors

Contributions

A.K. Conceptualization, synthesized all the samples, Investigation, designed the whole research, collected experimental data, Data plotting, writing of the manuscript, review, editing and formatting corresponding to the journals. D.S., P.B., C.K., and. P.G. help during experiment and writing manuscript. D.P.B, N.M., and I.P.S help and proposed many good suggestions.

Corresponding author

Correspondence to Akshkumar Verma.

Ethics declarations

Conflict of interest

• On behalf of all authors, the corresponding author states that there is no conflict of interest.

• The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript:

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Sahu, D., Bisen, D.P. et al. Achieving structural, photoluminescence, temperature dependent photoluminescence and thermo-luminescence properties of SrAl2O4:Dy3+Eu3+ phosphor for WLED application. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00773-3

Keywords

Navigation