Log in

Low lattice thermal conductivity and improved power factor in Ga-substituted CuSbTe2 alloys for mid-temperature thermoelectric application

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

I-V-VI based thermoelectric materials recently attracted the great attention due to their unique functional properties. Herein we have performed the systematic study of polycrystalline CuSb1-xGaxTe2 alloys with the nominal composition of x = 0.01, x = 0.05, x = 0.15. The samples were synthesized by the two-step process as follows melting and quenching, Ball milling and spark plasma sintering. The presence of various scattering mechanisms such as point defect scattering, alloy scattering and Umklapp scattering significantly reduced the lattice thermal conductivity of 0.56 W/mK at 453 K. The improved power factor of 0.396 mW/mK2 attained due to the highest weighted mobility of 81.04 cm2/Vs for x = 0.01 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.L. Shi, J. Zou, Z.G. Chen, Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026

    Article  CAS  PubMed  Google Scholar 

  2. Q. Shi, J. Li, X. Zhao, Y. Chen, F. Zhang, Y. Zhong, R. Ang, Comprehensive Insight into p -Type Bi 2 Te 3 -based thermoelectrics near room temperature. ACS Appl. Mater. Interfaces (2022). https://doi.org/10.1021/acsami.2c13109

    Article  PubMed  PubMed Central  Google Scholar 

  3. N. Jia, X.Y. Tan, J. Xu, Q. Yan, M.G. Kanatzidis, Achieving enhanced thermoelectric performance in multiphase materials, accounts. Mater. Res. 3, 237–246 (2022). https://doi.org/10.1021/accountsmr.1c00228

    Article  CAS  Google Scholar 

  4. J. Liang, X. Shi, Y. Peng, W. Liu, H. Yang, C. Liu, J. Chen, Q. Zhou, L. Miao, Z. Chen, Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n-type Mg 3+ δ (Sb, Bi) 2 zintls. Adv. Energy Mater. 2201086, 2201086 (2022). https://doi.org/10.1002/aenm.202201086

    Article  CAS  Google Scholar 

  5. G. hong Song, G. peng Li, X. yu Li, H. Du, F. Hu, Thermoelectric performance of copper-rich β-Cu2Se films with Ag-do** by magnetron sputtering. Mater. Chem. Phys. 260, 124143 (2021). https://doi.org/10.1016/j.matchemphys.2020.124143

  6. S. Aminorroaya Yamini, R. Santos, R. Fortulan, A.A. Gazder, A. Malhotra, D. Vashaee, I. Serhiienko, T. Mori, Room-temperature thermoelectric performance of n-type multiphase pseudobinary Bi2Te3-Bi2S3 compounds: Synergic effects of phonon scattering and energy filtering. ACS Appl. Mater. Interfaces. (2023). https://doi.org/10.1021/acsami.3c01956

  7. Y. **, D. Ren, Y. Qiu, L.D. Zhao, Electrical and thermal transport properties of Ge1–xPbxCuySbyTeSe2y. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304512

    Article  Google Scholar 

  8. L.C. Yin, W. Di Liu, M. Li, Q. Sun, H. Gao, D.Z. Wang, H. Wu, Y.F. Wang, X.L. Shi, Q. Liu, Z.G. Chen, High carrier mobility and high figure of merit in the CuBiSe2 Alloyed GeTe. Adv. Energy Mater. 11 (2021). https://doi.org/10.1002/aenm.202102913

  9. J. Wang, C. Zhou, Y. Yu, Y. Zhou, L. Lu, B. Ge, Y. Cheng, C.L. Jia, R. Mazzarello, Z. Shi, M. Wuttig, W. Zhang, Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy. 79 (2021). https://doi.org/10.1016/j.nanoen.2020.105484

  10. T. Hussain, X. Li, M.H. Danish, M.U. Rehman, J. Zhang, D. Li, G. Chen, G. Tang, Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy. 73 (2020). https://doi.org/10.1016/j.nanoen.2020.104832

  11. C. Li, H. Wu, B. Zhang, H. Zhu, Y. Fan, X. Lu, X. Sun, X. Zhang, G. Wang, X. Zhou, High thermoelectric performance of Co-Doped P-Type polycrystalline SnSe via optimizing electrical transport properties. ACS Appl. Mater. Interfaces 12, 8446–8455 (2020). https://doi.org/10.1021/acsami.9b20610

    Article  CAS  PubMed  Google Scholar 

  12. H. Wang, H. Hu, N. Man, C. **ong, Y. **ao, X. Tan, G. Liu, J. Jiang, Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Mater. Today Phys. 16, 100298 (2021). https://doi.org/10.1016/j.mtphys.2020.100298

    Article  CAS  Google Scholar 

  13. X. Tan, J. Ding, H. Luo, O. Delaire, J. Yang, Z. Zhou, J. Le Lan, Y.H. Lin, C.W. Nan, High thermoelectric performance of AgSb1-xPbxSe2 prepared by fast nonequilibrium synthesis. ACS Appl. Mater. Interfaces 12, 41333–41341 (2020). https://doi.org/10.1021/acsami.0c10508

    Article  CAS  PubMed  Google Scholar 

  14. V. Vijay, S. Harish, J. Archana, M. Navaneethan, Cation disorder and bond anharmonicity synergistically boosts the thermoelectric performance of p-type AgSbSe 2. CrystEngComm 23, 5522–5530 (2021). https://doi.org/10.1039/d1ce00599e

    Article  CAS  Google Scholar 

  15. O. Madelung, Semiconductors: Data Handbook (2004), pp. 645–652. https://doi.org/10.1007/978-3-642-18865-7

  16. W.T. Yen, K.K. Wang, H.J. Wu, Hybridization of n-type Bi2Te3 crystals with liquid-like copper chalcogenide elicits record-high thermoelectric performance. Mater. Today Phys. 34, 101065 (2023). https://doi.org/10.1016/j.mtphys.2023.101065

    Article  CAS  Google Scholar 

  17. L.I. Soliman, A.M. Abo El Soad, H.A. Zayed, S.A. El Ghfar, Structural and electrical properties of CuSbTe2, CuSbSe2 and CuSbS2 chalcogenide this films. Fiz. A. 11, 139–152 (2002) http://axiom.iop.org/fmtprt?VdkVgwKey=7697805&fmt=H&emailed=1

  18. D. Zhang, M. **e, D. Safanama, K. Saglik, X.Y. Tan, S.F.D. Solco, J. Cao, C.K.I. Tan, H. Liu, S. Wang, Q. Zhu, W.H.D. Fam, Q. Yan, J. Wu, A. Suwardi, Sb alloying for engineering high-thermoelectric zT of CuGaTe 2. Adv. Energy Sustain. Res. 2300069, 1–9 (2023). https://doi.org/10.1002/aesr.202300069

    Article  CAS  Google Scholar 

  19. S. Tahir, A. Ashfaq, G.R. Sani, R. Sebastian Bonilla, U. ur Rehman, S. Mushtaq, W. Ahmad, K. Muhammad Khan, M. Haneef, R. Saeed, Enhanced thermoelectric performance of n-type MgZnO enabled via synergy of chemical bonding and grain boundaries modulation. Inorg. Chem. Commun. 141, 109567 (2022). https://doi.org/10.1016/j.inoche.2022.109567

  20. N. Li, W. He, C. Li, G. Wang, G. Wang, X. Zhou, X. Lu, The role of electronegativity in the thermoelectric performance of GeTe-I-V-VI2solid solutions. J. Mater. Chem. A. 9, 2385–2393 (2021). https://doi.org/10.1039/d0ta10268g

    Article  CAS  Google Scholar 

  21. S.A. Hosseini, S. Khanniche, G.J. Snyder, S. Huberman, P.A. Greaney, G. Romano, Mode- and space-resolved thermal transport of alloy nanostructures. Int. J. Heat Mass Transf. 195, 1–6 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123191

    Article  CAS  Google Scholar 

  22. V. Vijay, S. Harish, J. Archana, M. Navaneethan, Ultra-high power factor of p-type Bi2Se3 for room-temperature thermoelectric applications. Chem. Commun. 59, 8119–8122 (2023). https://doi.org/10.1039/d3cc01072d

    Article  CAS  Google Scholar 

  23. X. Ai, B. Lei, M.O. Cichocka, L. Giebeler, R.B. Villoro, S. Zhang, C. Scheu, N. Pérez, Q. Zhang, A. Sotnikov, D.J. Singh, K. Nielsch, R. He, Enhancing the thermoelectric properties via modulation of defects in P-Type MNiSn-Based (M = Hf, Zr, Ti) half-heusler materials. Adv. Funct. Mater. 2305582, 1–10 (2023). https://doi.org/10.1002/adfm.202305582

    Article  CAS  Google Scholar 

  24. G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Weighted Mobility. Adv. Mater. 32, 1–5 (2020). https://doi.org/10.1002/adma.202001537

    Article  CAS  Google Scholar 

  25. K. Cheng, Z. Bu, J. Tang, X. Zhang, X. Meng, W. Li, Y. Pei, Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600 K. Mater. Today Phys. 28, 0–6 (2022). https://doi.org/10.1016/j.mtphys.2022.100887

  26. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 1–6 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  27. R.S. Sundari, S. Harish, V. Vijay, Suppression of intrinsic thermal conductivity in Sr1−xGdxTiO3 ceramics via phonon-point defect scattering for enhanced thermoelectric application. RSC Adv 13, 665–673 (2023). https://doi.org/10.1039/d2ra04829a

    Article  CAS  Google Scholar 

  28. V. Vijay, S. Harish, J. Archana, M. Navaneethan, Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi2Se3 nanostructures for thermoelectric applications. J. Colloid Interface Sci. 612, 97–110 (2022). https://doi.org/10.1016/j.jcis.2021.12.027

    Article  CAS  PubMed  Google Scholar 

  29. X.L. Shi, X. Tao, J. Zou, Z.G. Chen, High-performance thermoelectric SnSe: Aqueous synthesis, innovations, and challenges. Adv. Sci. 7 (2020). https://doi.org/10.1002/advs.201902923

  30. M. Hong, Z.G. Chen, L. Yang, Z.M. Liao, Y.C. Zou, Y.H. Chen, S. Matsumura, J. Zou, Achieving zT > 2 in p-Type AgSbTe2−x sex alloys via exploring the extra light valence band and introducing dense stacking faults. Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/aenm.201702333

Download references

Acknowledgements

The authors thank the management of SRM Institute of Science and Technology for the support through SEED and STARTUP grant. We also thank DST SERB (CRG/2021/008427), CSIR-HRDG (03/1507/23/EMR-II) and DST-FIST (SR/FST/PS-II/2021/190(G)), Govt. of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harish.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Temperature dependent Lorentz number, thermal diffusivity, Specific heat capacity and weighted mobility of CuSb1-xGaxTe2, (x = 0.01, x = 0.05, x = 0.15) samples were provided in the supporting information.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harish, S., Vijay, V., Ikeda, H. et al. Low lattice thermal conductivity and improved power factor in Ga-substituted CuSbTe2 alloys for mid-temperature thermoelectric application. emergent mater. 7, 163–170 (2024). https://doi.org/10.1007/s42247-023-00602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00602-z

Keywords

Navigation